Browse > Article
http://dx.doi.org/10.5423/RPD.2017.23.2.114

A New Frontier for Biological Control against Plant Pathogenic Nematodes and Insect Pests I: By Microbes  

Lee, Hae-Ran (Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
Jung, Jihye (Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
Riu, Myoungjoo (Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
Ryu, Choong-Min (Molecular Phytobacteriology Laboratory, Korea Research Institute of Bioscience & Biotechnology (KRIBB))
Publication Information
Research in Plant Disease / v.23, no.2, 2017 , pp. 114-149 More about this Journal
Abstract
World-wide crop loss caused by insect pest and nematode reaches critical level. In Korea, similar crop loss has been gradually augmented in the field and greenhouse due to continuous crop rotation. The current methods on controlling herbivorous insects and plant parasitic nematodes are mostly depended on agro-chemicals that have resulted additional side-effect including occurrence of resistant insects and nematodes, environmental contamination, and accumulation in human body. To overcome the pitfalls, microbe-based control method have been introduced and applied for several decades. Here, we revised biological control using by the bacteria, fungi, and virus in order to kill insect and nematode and to attenuate its virulence mechanism. The introduced microbes mainly secreted out the hydrolysing enzymes and toxic compounds to target host membrane or cell wall directly. Indirectly, the microbe-triggered plant innate immunity against insects and nematodes was also reported. In conclusion, we provide a new frontier of microbe-based environmentally friendly procedure and effective methods to manage insects and nematodes.
Keywords
Biological control; Entomopathogenic microorganism; Insect pest; Nematophagous microorganism; Plant pathogenic nematode;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Flury, P., Aellen, N., Ruffner, B., Pechy-Tarr, M., Fataar, S., Metla, Z., Dominguez-Ferreras, A., Bloemberg, G., Frey, J., Goesmann, A., Raaijmakers, J. M., Duffy, B., Hofte, M., Blom, J., Smits, T. H., Keel, C. and Maurhofer, M. 2016. Insect pathogenicity in plant-beneficial pseudomonads: phylogenetic distribution and comparative genomics. ISME J. 10: 2527-2542.   DOI
2 Gallagher, L. A. and Manoil, C. 2001. Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J. Bacteriol. 183: 6207-6214.   DOI
3 Gams, W. and Zare, R. 2001. A revision of Verticillium sect. Prostrata. III. Generic classification. Nova Hedwigia 72: 329-337.
4 Gao, H., Qi, G., Yin, R., Zhang, H., Li, C. and Zhao, X. 2016. Bacillus cereus strain S2 shows high nematicidal activity against Meloidogyne incognita by producing sphingosine. Sci. Rep. 6: 28756.   DOI
5 Glaeser, S. P., Dott, W., Busse, H. J. and Kampfer, P. 2013. Fictibacillus phosphorivorans gen. nov., sp. nov. and proposal to reclassify Bacillus arsenicus, Bacillus barbaricus, Bacillus macauensis, Bacillus nanhaiensis, Bacillus rigui, Bacillus solisalsi and Bacillus gelatini in the genus Fictibacillus. Int. J. Syst. Evol. Microbiol. 63: 2934-2944.   DOI
6 Glare, T., Caradus, J., Gelernter, W., Jackson, T., Keyhani, N., Kohl, J., Marrone, P., Morin, L. and Stewart, A. 2012. Have biopesticides come of age? Trends Biotechnol. 30: 250-258.   DOI
7 Gonzalez, F., Tkaczuk, C., Dinu, M. M., Fiedler, Z., Vidal, S., Zchori- Fein, E. and Messelink, G. J. 2016. New opportunities for the integration of microorganisms into biological pest control systems in greenhouse crops. J. Pest Sci. 89: 295-311.   DOI
8 Haas, D. and Defago, G. 2005. Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat. Rev. Microbiol. 3: 307-319.   DOI
9 Haase, S., Sciocco-Cap, A. and Romanowski, V. 2015. Baculovirus insecticides in Latin America: historical overview, current status and future perspectives. Viruses 7: 2230-2267.   DOI
10 Han, X. Y., Han, F. S. and Segal, J. 2008. Chromobacterium haemolyticum sp. nov., a strongly haemolytic species. Int. J. Syst. Evol. Microbiol. 58: 1398-1403.   DOI
11 Harris, A. K., Williamson, N. R., Slater, H., Cox, A., Abbasi, S., Foulds, I., Simonsen, H. T., Leeper, F. J. and Salmond, G. P. 2004. The Serratia gene cluster encoding biosynthesis of the red antibiotic, prodigiosin, shows species- and strain-dependent genome context variation. Microbiology 150: 3547-3560.   DOI
12 Hashimoto, Y. 2002 Study of the bacteria pathogenic for aphids, isolation of bacteria and identification of insecticidal compound. Rep. Hokkaido Prefect. Agric. Exp. Stn. 102: 1-48.
13 Hsu, C. H., Nguyen, A. D., Chen, Y. W. and Wang, S. L. 2014. Tyrosinase inhibitors and insecticidal materials produced by Burkholderia cepacia using squid pen as the sole carbon and nitrogen source. Res. Chem. Intermed. 40: 2249-2258.   DOI
14 Hsueh, Y. P., Mahanti, P., Schroeder, F. C. and Sternberg, P. W. 2013. Nematode-trapping fungi eavesdrop on nematode pheromones. Curr. Biol. 23: 83-86.   DOI
15 Huang, X., Tian, B., Niu, Q., Yang, J., Zhang, L. and Zhang, K. 2005a. An extracellular protease from Brevibacillus laterosporus G4 without parasporal crystals can serve as a pathogenic factor in infection of nematodes. Res. Microbiol. 156: 719-727.   DOI
16 Kalbe, C., Marten, P. and Berg, G. 1996. Strains of the genus Serratia as beneficial rhizobacteria of oilseed rape with antifungal properties. Microbiol. Res. 151: 433-439.   DOI
17 Jirakkakul, J., Punya, J., Pongpattanakitshote, S., Paungmoung, P., Vorapreeda, N., Tachaleat, A., Klomnara, C., Tanticharoen, M. and Cheevadhanarak, S. 2008. Identification of the nonribosomal peptide synthetase gene responsible for bassianolide synthesis in wood-decaying fungus Xylaria sp. BCC1067. Microbiology 154: 995-1006.   DOI
18 Ju, S., Lin, J., Zheng, J., Wang, S., Zhou, H. and Sun, M. 2016. Alcaligenes faecalis ZD02, a novel nematicidal bacterium with an extracellular serine protease virulence factor. Appl. Environ. Microbiol. 82: 2112-2120.   DOI
19 Jung, S. C. and Kim, Y. G. 2006. Potentiating effect of Bacillus thuringiensis subsp. kurstaki on pathogenicity of entomopathogenic bacterium Xenorhabdus nematophila K1 against diamondback moth, Plutella xylostella. J. Econ. Entomol. 100: 246-250.
20 Kämpfer, P., Busse, H. J. and Scholz, H. C. 2009. Chromobacterium piscinae sp. nov. and Chromobacterium pseudoviolaceum sp. nov., from environmental samples. Int. J. Syst. Evol. Microbiol. 59: 2486-2490.   DOI
21 Kaur, T., Jasrotia, S., Ohri, P. and Manhas, R. K. 2016. Evaluation of in vitro and in vivo nematicidal potential of a multifunctional streptomycete, Streptomyces hydrogenans strain DH16 against Meloidogyne incognita. Microbiol. Res. 192: 247-252.   DOI
22 Kaur, T. and Manhas, R. K. 2014. Antifungal, insecticidal and plant growth promoting potential of Streptomyces hydrogenans DH16. J. Basic Microbiol. 54: 1175-1185.   DOI
23 [BVL] Bundesamt fur Verbraucherschutz und Lebensmittelsicherheit (2015 onwards). Federal Office of Consumer Protection and Food Safety. Register of Plant Protection Products. URL https://goo.gl/Q05AOg [13 July 2015].
24 Lacey, L. A., Grzywacz, D., Shapiro-Ilan, D. I., Frutos, R., Brownbridge, M. and Goettel, M. S. 2015. Insect pathogens as biological control agents: back to the future. J. Invertebr. Pathol. 132: 1-41.   DOI
25 Bunnori, N. M. and Mohamed, R. 2012. Identification and characterization of Burkholderia pseudomallei K96243 serine and metallopeptidases. Procedia Comput. Sci. 11: 36-42.   DOI
26 Burkholder, W. H. 1950. Sour skin, a bacterial rot of onion bulbs. Phytopathology 40: 115-117.
27 Cabrera, J. A., Menjivar, R. D., Dababat, A. A. and Sikora, R. A. 2013. Properties and nematicide performance of avermectins. J. Phytopathol. 161: 65-69.   DOI
28 Cakmakci, R., Donmez, F., Aydin, A. and Sahin, F. 2006. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 38: 1482-1487.   DOI
29 Casique-Valdes, R., Sanchez-Lara, B. M., Ek-Maas, J., Hernandez-Guerra, C., Bidochka, M., Guizar-Guzman, L., Lopez-Arroyo, J. I. and Sanchez-Pena, S. R. 2015. Field trial of aqueous and emulsion preparations of entomopathogenic fungi against the asian citrus psyllid (Hemiptera: Liviidae) in a lime orchard in Mexico. J. Entomol. Sci. 50: 79-87.   DOI
30 Cezairliyan, B., Vinayavekhin, N., Grenfell-Lee, D., Yuen, G. J., Saghatelian, A. and Ausubel, F. M. 2013. Identification of Pseudomonas aeruginosa phenazines that kill Caenorhabditis elegans. PLoS Pathog. 9: e1003101.   DOI
31 Tucker, S. L. and Talbot, N. J. 2001. Surface attachment and prepenetration stage development by plant pathogenic fungi. Annu. Rev. Phytopathol. 39: 385-417.   DOI
32 Tikhonov, V. E., Lopez-Llorca, L. V., Salinas, J. and Jansson, H. B. 2002. Purification and characterization of chitinases from the nematophagous fungi Verticillium chlamydosporium and V. suchlasporium. Fungal Genet. Biol. 35: 67-78.   DOI
33 Trent, M. S., Stead, C. M., Tran, A. X. and Hankins, J. V. 2006. Diversity of endotoxin and its impact on pathogenesis. J. Endotoxin Res. 12: 205-223.
34 Tseng, M. N., Chung, P. C. and Tzean, S. S. 2011. Enhancing the stress tolerance and virulence of an entomopathogen by metabolic engineering of dihydroxynaphthalene melanin biosynthesis genes. App. Environ. Microbiol. 77: 4508-4519.   DOI
35 Tulloch, M. 1972. The Genus Myrothecium Tode ex Fr. Mycological Papers, No. 130. Commonwealth Mycological Institute, Kew, UK. pp. 1-42.
36 Turner, M. J. and Schaeffer, J. M. 1989. Mode of action of Ivermectin. In: Ivermectin and Abamectin, ed. by W. C. Campbell, pp. 73-88. Springer, New York, NY, USA.
37 Twomey, U., Warrior, P., Kerry, B. R. and Perry, R. N. 2000. Effects of the biological nematicide, DiTera, on hatching of Globodera rostochiensis and G. pallida. Nematology 2: 355-362.   DOI
38 Vachon, V., Laprade, R. and Schwartz, J. L. 2012. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: a critical review. J. Invertebr. Pathol. 111: 1-12.   DOI
39 Van Loon, L. C. and Bakker, P. A. H. M. 2006. Induced systemic resistance as a mechanism of disease suppression by Rhizobacteria. In: PGPR: Biocontrol and Biofertilization, ed. by Z. A. Siddiqui, pp. 39-66. Springer, Dordrecht, Netherlands.
40 ROMPP Online (2015 onwards). Version 4.0. Georg Thieme Verlag Suttgart. URL https://roempp.thieme.de/roempp4.0/do/Welcome.do [14 July 2015].
41 Rowley, D. L., Popham, H. J. and Harrison, R. L. 2011. Genetic variation and virulence of nucleopolyhedroviruses isolated worldwide from the heliothine pests Helicoverpa armigera, Helicoverpa zea and Heliothis virescens. J. Invertebr. Pathol. 107: 112-126.   DOI
42 Ruanpanun, P., Laatsch, H., Tangchitsomkid, N. and Lumyong, S. 2011. Nematicidal activity of fervenulin isolated from a nematicidal actinomycete, Streptomyces sp. CMU-MH021, on Meloidogyne incognita. World J. Microbiol. Biotechnol. 27: 1373-1380.   DOI
43 Ruffner, B., Pechy-Tarr, M., Hofte, M., Bloemberg, G., Grunder, J., Keel, C. and Maurhofer, M. 2015. Evolutionary patchwork of an insecticidal toxin shared between plant-associated Pseudomonads and the insect pathogens Photorhabdus and Xenorhabdus. BMC Genomics 16: 609.   DOI
44 Ruffner, B., Pechy-Tarr, M., Ryffel, F., Hoegger, P., Obrist, C., Rindlisbacher, A., Keel, C. and Maurhofer, M. 2013. Oral insecticidal activity of plant-associated Pseudomonads. Environ. Microbiol. 15: 751-763.   DOI
45 Ruiu, L. 2013. Brevibacillus laterosporus, a pathogen of invertebrates and a broad-spectrum antimicrobial species. Insects 4: 476-492.   DOI
46 Ruiu, L. 2015. Insect pathogenic bacteria in integrated pest management. Insects 6: 352-367.   DOI
47 Safavi, S. A. 2013. In vitro and in vivo induction and characterization of Beauvericin isolated from Beauveria bassiana and its bioassay on Galleria mellonella larvae. J. Agric. Sci. Tech. 15: 1-10.
48 Yang, J., Tian, B., Liang, L. and Zhang, K. Q. 2007a. Extracellular enzymes and the pathogenesis of nematophagous fungi. Appl. Microbiol. Biotechnol. 75: 21-31.   DOI
49 Yamamoto, K., Oishi, K., Fujimatsu, I. and Komatsu, K. 1991. Production of R-(-)-mandelic acid from mandelonitrile by Alcaligenes faecalis ATCC 8750. Appl. Environ. Microbiol. 57: 3028-3032.
50 Yang, E., Xu, L., Yang, Y., Zhang, X., Xiang, M., Wang, C., An, Z. and Liu, X. 2012. Origin and evolution of carnivorism in the Ascomycota (fungi). Proc. Natl. Acad. Sci. U. S. A. 109: 10960-10965.   DOI
51 Yang, J., Wang, L., Ji, X., Feng, Y., Li, X., Zou, C., Xu, J., Ren, Y., Mi, Q., Wu, J., Liu, S., Liu, Y., Huang, X., Wang, H., Niu, X., Li, J., Liang, L., Luo, Y., Ji, K., Zhou, W., Yu, Z., Li, G., Liu, Y., Li, L., Qiao, M., Feng, L. and Zhang, K. Q. 2011. Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. PLoS Pathog. 7: e1002179.   DOI
52 Yang, J. and Zhang, K. Q. 2014. Biological control of plant-parasitic nematodes by Nematophagous fungi. In: Nematode-Trapping Fungi, eds. by K. Q. Zhang and K. D. Hyde, pp. 231-262. Springer, Dordrecht, Netherlands.
53 Yang, L. Y., Wang, J. D., Zhang, J., Xue, C. Y., Zhang, H., Wang, X. J. and Xiang, W. S. 2013. New nemadectin congeners with acaricidal and nematocidal activity from Streptomyces microflavus neau3 Y-3. Bioorg. Med. Chem. Lett. 23: 5710-5713.   DOI
54 Yang, S. M., Dowler, W. M. and Johnson, D. R. 1991. Comparison of methods for selecting fungi pathogenic to leafy spurge. Plant Dis. 75: 1201-1203.   DOI
55 Yang, Y., Yang, E., An, Z. and Liu, X. 2007b. Evolution of nematodetrapping cells of predatory fungi of the Orbiliaceae based on evidence from rRNA-encoding DNA and multiprotein sequences. Proc. Natl. Acad. Sci. U. S. A. 104: 8379-8384.   DOI
56 Gross, H. and Loper, J. E. 2009. Genomics of secondary metabolite production by Pseudomonas spp. Nat. Prod. Rep. 26: 1408-1446.   DOI
57 Gorashi, N. E., Tripathi, M., Kalia, V. and Gujar, G. T. 2014. Identification and characterization of the Sudanese Bacillus thuringiensis and related bacterial strains for their efficacy against Helicoverpa armigera and Tribolium castaneum. Indian J. Exp. Biol. 52: 637-649.
58 Griffitts, J. S., Haslam, S. M., Yang, T., Garczynski, S. F., Mulloy, B., Morris, H., Cremer, P. S., Dell, A., Adang, M. J. and Aroian, R. V. 2005. Glycolipids as receptors for Bacillus thuringiensis crystal toxin. Science 307: 922-925.   DOI
59 Grimont, F. and Grimont, P. A. D. 1992. The genus Serratia. In: The Prokaryotes, eds. by M. Dworkin, S. Falkow, E. Rosenberg, K. H. Schleifer and E. Stackebrandt, pp. 2822-2848. Springer, New York, NY, USA.
60 Guclu, S., Ak, K., Eken, C., Akyol, H., Sekban, R., Beytut, B. and Yildirim, R. 2010. Pathogenicity of Lecanicillium muscarium against Ricania simulans. Bull. Insectology 63: 243-246.
61 Guo, J., Jing, X., Peng, W. L., Nie, Q., Zhai, Y., Shao, Z., Zheng, L., Cai, M., Li, G., Zuo, H., Zhang, Z., Wang, R. R., Huang, D., Cheng, W., Yu, Z., Chen, L. L. and Zhang, J. 2016. Comparative genomic and functional analyses: unearthing the diversity and specificity of nematicidal factors in Pseudomonas putida strain 1A00316. Sci. Rep. 6: 29211.   DOI
62 Guo, J. P., Zhu, C. Y., Zhang, C. P., Chu, Y. S., Wang, Y. L., Zhang, J. X., Wu, D. K., Zhang, K. Q. and Niu, X. M. 2012. Thermolides, potent nematocidal PKS-NRPS hybrid metabolites from thermophilic fungus Talaromyces thermophilus. J. Am. Chem. Soc. 134: 20306-20309.   DOI
63 Gupta, S. and Bhattacharyya, B. 2003. Antimicrotubular drugs binding to vinca domain of tubulin. Mol. Cell. Biochem. 253: 41-47.   DOI
64 Huger, A. M. 2005. The Oryctes virus: its detection, identification and implementation in biological control of the coconut palm rhinoceros beetle, Oryctes rhinoceros (Coleoptera: Scarabaeidae). J. Invertebr. Pathol. 89: 78-84.   DOI
65 Huang, X. W., Niu, Q. H., Zhou, W. and Zhang, K. Q. 2005b. Bacillus nematocida sp. nov., a novel bacterial strain with nematotoxic activity isolated from soil in Yunnan, China. Syst. Appl. Microbiol. 28: 323-327.   DOI
66 Huang, Y., Xu, C., Ma, L., Zhang, K., Duan, C. and Mo, M. 2010. Characterisation of volatiles produced from Bacillus megaterium YFM3.25 and their nematicidal activity against Meloidogyne incognita. Eur. J. Plant Pathol. 126: 417-422.   DOI
67 Huang, Z., Hao, Y., Gao, T., Huang, Y., Ren, S. and Keyhani, N. O. 2016. The Ifchit1 chitinase gene acts as a critical virulence factor in the insect pathogenic fungus Isaria fumosorosea. Appl. Microbiol. Biotechnol. 100: 5491-5503.   DOI
68 Hungria, M., Astolfi-Filho, S., Chueire, L. M., Nicolas, M. F., Santos, E. B., Bulbol, M. R., Souza-Filho, A., Nogueira Assuncao, E., Germano, M. G. and Vasconcelos, A. T. 2005. Genetic characterization of Chromobacterium isolates from black water environments in the Brazilian Amazon. Lett. Appl. Microbiol. 41: 17-23.   DOI
69 Hunter, W. B., Avery, P. B., Pick, D. and Powell, C. A. 2011. Broad spectrum potential of Isaria fumosorosea against insect pests of citrus. Fla. Entomol. 94: 1051-1054.   DOI
70 Hurst, M. R., Glare, T. R., Jackson, T. A. and Ronson, C. W. 2000. Plasmid-located pathogenicity determinants of Serratia en-tomophila, the causal agent of amber disease of grass grub, show similarity to the insecticidal toxins of Photorhabdus luminescens. J. Bacteriol. 182: 5127-5138.   DOI
71 Khan, A., Williams, K., Molloy, M. P. and Nevalainen, H. 2003. Purification and characterization of a serine protease and chitinases from Paecilomyces lilacinus and detection of chitinase activity on 2D gels. Protein Expr. Purif. 32: 210-220.   DOI
72 Kaur, T., Vasudev, A., Sohal, S. K. and Manhas, R. K. 2014. Insecticidal and growth inhibitory potential of Streptomyces hydrogenans DH16 on major pest of India, Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). BMC Microbiol. 14: 227.   DOI
73 Kergunteuil, A., Bakhtiari, M., Formenti, L., Xiao, Z., Defossez, E. and Rasmann, S. 2016. Biological control beneath the feet: a review of crop protection against insect root herbivores. Insects 7: 70.   DOI
74 Kershaw, M. J., Moorhouse, E. R., Bateman, R., Reynolds, S. E. and Charnley, A. K. 1999. The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insect. J. Invertebr. Pathol. 74: 213-223.   DOI
75 Khan, A., Williams, K. L. and Nevalainen, H. K. M. 2004. Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biol. Control 31: 346-352.   DOI
76 Khan, A., Williams, K. L. and Nevalainen, H. K. M. 2006. Control of plant-parasitic nematodes by Paecilomyces lilacinus and Monacrosporium lysipagum in pot trials. BioControl 51: 643-658.   DOI
77 Khan, S., Nadir, S., Lihua, G., Xu, J., Holmes, K. A. and Dewen, Q. 2016. Identification and characterization of an insect toxin protein, Bb70p, from the entomopathogenic fungus, Beauveria bassiana, using Galleria mellonella as a model system. J. Invertebr. Pathol. 133: 87-94.   DOI
78 Kiewnick, S. and Sikora, R. A. 2006. Biological control of the rootknot nematode Meloidogyne incognita by Paecilomyces lilacinus strain 251. Biol. Control 38: 179-187.   DOI
79 Chen, T. H., Hsu, C. S., Tsai, P. J., Ho, Y. F. and Lin, N. S. 2001. Heterotrimeric G-protein and signal transduction in the nematodetrapping fungus Arthrobotrys dactyloides. Planta 212: 858-863.   DOI
80 Charles, J. F., Silva-Filha, M. H. and Nielsen-LeRoux, C. 2000. Mode of action of Bacillus sphaericus on mosquito larvae: incidence on resistance. In: Entomopathogenic Bacteria: From Laboratory to Field Application, eds. by J. F. Charles, M. H. Silva-Filha and C. Nielsen-LeRoux, pp. 237-252. Springer Netherlands, Dordrecht, Netherlands.
81 Chen, Z. X. and Dickson, D. W. 1998. Review of Pasteuria penetrans: biology, ecology and biological control potential. J. Nematol. 30: 313-340.
82 Chu, W. H., Dou, Q., Chu, H. L., Wang, H. H., Sung, C. K. and Wang, C. Y. 2015. Research advance on Esteya vermicola, a high potential biocontrol agent of pine wilt disease. Mycol. Prog. 14: 115.   DOI
83 Clardy, J., Fischbach, M. A. and Walsh, C. T. 2006. New antibiotics from bacterial natural products. Nat. Biotech. 24: 1541-1550.   DOI
84 Cordova-Kreylos, A. L., Fernandez, L. E., Koivunen, M., Yang, A., Flor-Weiler, L. and Marrone, P. G. 2013. Isolation and characterization of Burkholderia rinojensis sp. nov., a non-Burkholderia cepacia complex soil bacterium with insecticidal and miticidal activities. Appl. Environ. Microbiol. 79: 7669-7678.   DOI
85 Cronin, D., Moenne-Loccoz, Y., Fenton, A., Dunne, C., Dowling, D. N. and O'Gara, F. 1997. Role of 2,4-Diacetylphloroglucinol in the interactions of the biocontrol Pseudomonad strain F113 with the potato cyst nematode Globodera rostochiensis. Appl. Environ. Microbiol. 63: 1357-1361.
86 Vos, C., Claerhout, S., Mkandawire, R., Panis, B., De Waele, D. and Elsen, A. 2012. Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant Soil 354: 335-345.   DOI
87 Van Rij, E. T., Wesselink, M., Chin-A-Woeng, T. F., Bloemberg, G. V. and Lugtenberg, B. J. 2004. Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chlororaphis PCL1391. Mol. Plant-Microbe Interact. 17: 557-566.   DOI
88 Vega, F. E., Posada, F., Catherine Aime, M., Pava-Ripoll, M., Infante, F. and Rehner, S. A. 2008. Entomopathogenic fungal endophytes. Biol. Control 46: 72-82.   DOI
89 Veresoglou, S. D. and Rillig, M. C. 2012. Suppression of fungal and nematode plant pathogens through arbuscular mycorrhizal fungi. Biol. Lett. 8: 214-217.   DOI
90 Wachira, P. M., Kimenju, J. W. Okoth, S. A. and Mibey, R. K. 2009. Stimulation of nematode-destroying fungi by organic amendments applied in management of plant parasitic nematode. Asian J. Plant Sci. 8: 153-159.   DOI
91 Neidig, N., Paul, R. J., Scheu, S. and Jousset, A. 2011. Secondary metabolites of Pseudomonas fluorescens CHA0 drive complex non-trophic interactions with bacterivorous nematodes. Microb. Ecol. 61: 853-859.   DOI
92 Neung, S., Nguyen, X. H., Naing, K. W., Lee, Y. S. and Kim, K. Y. 2014. Insecticidal potential of Paenibacillus elgii HOA73 and its combination with organic sulfur pesticide on diamondback moth, Plutella xylostella. J. Korean Soc. Appl. Biol. Chem. 57: 181-186.   DOI
93 Nishiwaki, H., Ito, K., Otsuki, K., Yamamoto, H., Komai, K. and Matsuda, K. 2004. Purification and functional characterization of insecticidal sphingomyelinase C produced by Bacillus cereus. Eur. J. Biochem. 271: 601-606.   DOI
94 Schouteden, N., De Waele, D., Panis, B. and Vos, C. M. 2015. Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front. Microbiol. 6: 1280.
95 Sanahuja, G., Banakar, R., Twyman, R. M., Capell, T. and Christou, P. 2011. Bacillus thuringiensis: a century of research, development and commercial applications. Plant Biotechnol. J. 9: 283-300.   DOI
96 Sayre, R. M. and Wergin, W. P. 1977. Bacterial parasite of a plant nematode: morphology and ultrastructure. J. Bacteriol. 129: 1091-1101.
97 Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D. R. and Dean, D. H. 1998. Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol. Mol. Biol. Rev. 62: 775-806.
98 Segers, R., Butt, T. M., Kerry, B. R. and Peberdy, J. F. 1994. The nematophagous fungus Verticillium chlamydosporium produces a chymoelastase-like protease which hydrolyses host nematode proteins in situ. Microbiology 140: 2715-2723.   DOI
99 Selvaraj, S., Ganeshamoorthi, P., Anand, T., Raguchander, T., Seenivasan, N. and Samiyappan, R. 2014. Evaluation of a liquid formulation of Pseudomonas fluorescens against Fusarium oxysporum f. sp. cubense and Helicotylenchus multicinctus in banana plantation. BioControl 59: 345-355.   DOI
100 Sharma, A., Thakur, D. R., Kanwar, S. and Chandla, V. K. 2013. Diversity of entomopathogenic bacteria associated with the white grub, Brahmina coriacea. J. Pest Sci. 86: 261-273.   DOI
101 Shida, O., Takagi, H., Kadowaki, K. and Komagata, K. 1996. Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int. J. Syst. Bacteriol. 46: 939-946.   DOI
102 Zeddam, J. L., Cruzado, J. A., Rodriguez, J. L. and Ravallec, M. 2003. A new nucleopolyhedrovirus from the oil-palm leaf-eater Euprosterna elaeasa (Lepidoptera: Limacodidae): preliminary characterization and field assessment in Peruvian plantation. Agric. Ecosyst. Environ. 96: 69-75.   DOI
103 Yang, Z. S., Li, G. H., Zhao, P. J., Zheng, X., Luo, S. L., Li, L., Niu, X. M. and Zhang, K. Q. 2010. Nematicidal activity of Trichoderma spp. and isolation of an active compound. World J. Microbiol. Biotechnol. 26: 2297-2302.   DOI
104 Young, C. C., Arun, A. B., Lai, W. A., Chen, W. M., Chou, J. H., Shen, F. T., Rekha, P. D. and Kampfer, P. 2008. Chromobacterium aquaticum sp. nov., isolated from spring water samples. Int. J. Syst. Evol. Microbiol. 58: 877-880.   DOI
105 Yu, Z., Mo, M., Zhang, Y. and Zhang, K. Q. 2014. Taxonomy of Nematode-trapping fungi from Orbiliaceae, Ascomycota. In: Nematode-Trapping Fungi, eds. by K. Q. Zhang and K. D. Hyde, pp. 41-210. Springer, Dordrecht, Netherlands.
106 Zeng, Q., Huang, H., Zhu, J., Fang, Z., Sun, Q. and Bao, S. 2013. A new nematicidal compound produced by Streptomyces albogriseolus HA10002. Antonie van Leeuwenhoek 103: 1107-1111.   DOI
107 Zhang, F., Dashti, N., Hynes, R. K. and Smith, D. L. 1996. Plant growth promoting Rhizobacteria and soybean [Glycine max (L.) Merr.] nodulation and nitrogen fixation at suboptimal root zone temperatures. Ann. Bot. 77: 453-460.   DOI
108 Zhang, J., Hodgman, T. C., Krieger, L., Schnetter, W. and Schairer, H. U. 1997. Cloning and analysis of the first cry gene from Bacillus popilliae. J. Bacteriol. 179: 4336-4341.   DOI
109 Zheng, Z., Zheng, J., Liu, H., Peng, D. and Sun, M. 2016a. Complete genome sequence of Fictibacillus phosphorivorans G25-29, a strain toxic to nematodes. J. Biotechnol. 239: 20-22.   DOI
110 Hwang, K. S., Kim, H. U., Charusanti, P., Palsson, B. O. and Lee, S. Y. 2014. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol. Adv. 32: 255-268.   DOI
111 Iavicoli, A., Boutet, E., Buchala, A. and Metraux, J. P. 2003. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 16: 851-858.   DOI
112 Inci, A., Kilic, E. and Canhilal, R. 2014. Entomopathogens in control of urban pests. Ankara Univ. Vet. Fak. Derg. 61: 155-160.
113 Ishii, K., Adachi, T., Hamamoto, H. and Sekimizu, K. 2014. Serratia marcescens suppresses host cellular immunity via the production of an adhesion-inhibitory factor against immunosurveillance cells. J. Biol. Chem. 289: 5876-5888.   DOI
114 Jackson, T. A., Boucias, D. G. and Thaler, J. O. 2001. Pathobiology of amber disease, caused by Serratia spp., in the New Zealand grass grub, Costelytra zealandica. J. Invertebr. Pathol. 78: 232-243.   DOI
115 Jang, J. Y., Choi, Y. H., Shin, T. S., Kim, T. H., Shin, K. S., Park, H. W., Kim, Y. H., Kim, H., Choi, G. J., Jang, K. S., Cha, B., Kim, I. S., Myung, E. J. and Kim, J. C. 2016. Biological control of meloidogyne incognita by Aspergillus niger F22 producing oxalic acid. PLoS One 11: e0156230.   DOI
116 Jang, J. Y., Yang, S. Y., Kim, Y. C., Lee, C. W., Park, M. S., Kim, J. C. and Kim, I. S. 2013. Identification of orfamide A as an insecticidal metabolite produced by Pseudomonas protegens F6. J. Agric. Food Chem. 61: 6786-6791.   DOI
117 Jansson, H. B. and Lopez-Llorca, L. V. 2004. Control of nematodes by fungi. In: Fungal Biotechnology in Agriculture, Food and Environmental Applications, ed. by D. K. Arora, pp. 205-215. Marcel Dekker, New York, NY, USA.
118 Kirienko, N. V., Kirienko, D. R., Larkins-Ford, J., Wählby, C., Ruvkun, G. and Ausubel, F. M. 2013. Pseudomonas aeruginosa disrupts Caenorhabditis elegans iron homeostasis, causing a hypoxic response and death. Cell Host Microbe 13: 406-416.   DOI
119 Kil, Y. J., Seo, M. J., Kang, D. K., Oh, S. N., Cho, H. S., Youn, Y. N., Yasunaga-Aoki, C. and Yu, Y. M. 2014. Effects of Enterobacteria (Burkholderia sp.) on development of Riptortus pedestris. J. Fac. Agric. Kyushu Univ. 59: 77-84.
120 Kim, T. Y., Jang, J. Y., Jeon, S. J., Lee, H. W., Bae, C. H., Yeo, J. H., Lee, H. B., Kim, I. S., Park, H. W. and Kim, J. C. 2016. Nematicidal activity of kojic acid produced by Aspergillus oryzae against Meloidogyne incognita. J. Microbiol. Biotechnol. 26: 1383-1391.   DOI
121 Koga-Ban, Y., Niki, T., Nagamura, Y., Sasaki, T. and Minobe, Y. 1995. cDNA sequences of three kinds of beta-tubulins from rice. DNA Res. 2: 21-26.   DOI
122 Kong, H., Shimosaka, M., Ando, Y., Nishiyama, K., Fujii, T. and Miyashita, K. 2001. Species-specific distribution of a modular family 19 chitinase gene in Burkholderia gladioli. FEMS Microbiol. Ecol. 37: 135-141.   DOI
123 Kong, L., Zhu, S., Zhu, L., Xie, H., Wei, K., Yan, T., Wang, J., Wang, J., Wang, F. and Sun, F. 2014. Colonization of Alcaligenes faecalis strain JBW4 in natural soils and its detoxification of endosulfan. Appl. Microbiol. Biotechnol. 98: 1407-1416.   DOI
124 Kroemer, J. A., Bonning, B. C. and Harrison, R. L. 2015. Expression, delivery and function of insecticidal proteins expressed by recombinant baculoviruses. Viruses 7: 422-455.   DOI
125 Kubatova, A., Novotny, D., Prasil, K. and Mracek, Z. 2000. The nematophagous hyphomycete Esteya vermicola found in the Czech Republic. Czech Mycol. 52: 227-235.
126 Mavrodi, D. V., Bonsall, R. F., Delaney, S. M., Soule, M. J., Phillips, G. and Thomashow, L. S. 2001. Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J. Bacteriol. 183: 6454-6465.   DOI
127 Cuthbertson, A. G. S., Blackburn, L. F., Northing, P., Luo, W., Cannon, R. J. C. and Walters, K. F. A. 2008. Further compatibility tests of the entomopathogenic fungus Lecanicillium muscarium with conventional insecticide products for control of sweetpotato whitefly, Bemisia tabaci on poinsettia plants. Insect Sci. 15: 355-360.   DOI
128 Cuthbertson, A. G. S., Walters, K. F. and Deppe, C. 2005. Compatibility of the entomopathogenic fungus Lecanicillium muscarium and insecticides for eradication of sweetpotato whitefly, Bemisia tabaci. Mycopathologia 160: 35-41.   DOI
129 Mascarin, G. M. and Jaronski, S. T. 2016. The production and uses of Beauveria bassiana as a microbial insecticide. World J. Microbiol. Biotechnol. 32: 177.   DOI
130 McSpadden Gardener, B. B. 2007. Diversity and ecology of biocontrol Pseudomonas spp. in agricultural systems. Phytopathology 97: 221-226.   DOI
131 Meerupati, T. Andersson, K. M., Friman, E., Kumar, D., Tunlid, A. and Ahren, D. 2013. Genomic mechanisms accounting for the adaptation to parasitism in nematode-trapping fungi. PLoS Genet. 9: e1003909.   DOI
132 Mendoza, A. R., Kiewnick, S. and Sikora, R. A. 2008. In vitro activity of Bacillus firmus against the burrowing nematode Radopholus similis, the root-knot nematode Meloidogyne incognita and the stem nematode Ditylenchus dipsaci. Biocontrol Sci. Technol. 18: 377-389.   DOI
133 Nordbring-Hertz, B., Jansson, H. B. and Tunlid, A. 2011. Nematophagous fungi. eLS doi: 10.1002/9780470015902.a0000374.pub3.   DOI
134 Niu, Q., Huang, X., Zhang, L., Lian, L., Li, Y., Li, J., Yang, J. and Zhang, K. 2007. Functional identification of the gene bace16 from nematophagous bacterium Bacillus nematocida. Appl. Microbiol. Biotechnol. 75: 141-148.   DOI
135 Niu, Q., Huang, X., Zhang, L., Xu, J., Yang, D., Wei, K., Niu, X., An, Z., Bennett, J. W., Zou, C., Yang, J. and Zhang, K. Q. 2010. A Trojan horse mechanism of bacterial pathogenesis against nematodes. Proc. Natl. Acad. Sci. U. S. A. 107: 16631-16636.   DOI
136 Noel, G. R., Atibalentja, N. and Domier, L. L. 2005. Emended description of Pasteuria nishizawae. Int. J. Syst. Evol. Microbiol. 55: 1681-1685.   DOI
137 Nunez-Valdez, M. E., Calderon, M. A., Aranda, E., Hernandez, L., Ramirez-Gama, R. M., Lina, L., Rodriguez-Segura, Z., Gutierrez Mdel, C. and Villalobos, F. J. 2008. Identification of a putative Mexican strain of Serratia entomophila pathogenic against root-damaging larvae of Scarabaeidae (Coleoptera). Appl. Environ. Microbiol. 74: 802-810.   DOI
138 Oka, Y., Chet, I. and Spiegel, Y. 1993. Control of the rootknot nematode Meloidogyne javanica by Bacillus cereus. Biocontrol Sci. Technol. 3: 115-126.   DOI
139 Okazaki, S., Sugawara, M. and Minamisawa, K. 2004. Bradyrhizobium elkanii rtxC gene is required for expression of symbiotic phenotypes in the final step of rhizobitoxine biosynthesis. Appl. Environ. Microbiol. 70: 535-541.   DOI
140 Olcott, M. H., Henkels, M. D., Rosen, K. L., Walker, F. L., Sneh, B., Loper, J. E. and Taylor, B. J. 2010. Lethality and developmental delay in Drosophila melanogaster larvae after ingestion of selected Pseudomonas fluorescens strains. PLoS One 5: e12504.   DOI
141 Siddiqui, I. A. and Shaukat, S. S. 2003b. Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2,4-diacetylpholoro-glucinol. Soil Biol. Biochem. 35: 1615-1623.   DOI
142 Shim, H. J., Choi, J. Y., Wang, Y., Tao, X. Y., Liu, Q., Roh, J. Y., Kim, J. S., Kim, W. J., Woo, S. D., Jin, B. R. and Je, Y. H. 2013. NeuroBactrus, a novel, highly effective, and environmentally friendly recombinant baculovirus insecticide. Appl. Environ. Microbiol. 79: 141-149.   DOI
143 Siddiqui, I. A., Haas, D. and Heeb, S. 2005. Extracellular protease of Pseudomonas fluorescens CHA0, a biocontrol factor with activity against the root-knot nematode Meloidogyne incognita. Appl. Environ. Microbiol. 71: 5646-5649.   DOI
144 Siddiqui, I. A. and Shaukat, S. S. 2003a. Plant species, host age and host genotype effects on Meloidogyne incognita biocontrol by Pseudomonas fluorescens strain CHA0 and its geneticallymodified derivatives. J. Phytopathol. 151: 231-238.   DOI
145 Siddiqui, I. A. and Shaukat, S. S. 2004a. Suppression of Meloidogyne incognita by Pseudomonas fluorescens strain CHA0 and its genetically-modified derivatives: II. The influence of sodium chloride. Nematol. Mediterr. 32: 127-130.
146 Siddiqui, I. A. and Shaukat, S. S. 2004b. Systemic resistance in tomato induced by biocontrol bacteria against the root-knot nematode, Meloidogyne javanica is independent of salicylic acid production. J. Phytopathol. 152: 48-54.   DOI
147 Siddiqui, I. A. and Shaukat, S. S. 2004c. Trichoderma harzianum enhances the production of nematicidal compounds in vitro and improves biocontrol of Meloidogyne javanica by Pseudomonas fluorescens in tomato. Lett. Appl. Microbiol. 38: 169-175.   DOI
148 Kupferschmied, P., Chai, T., Flury, P., Blom, J., Smits, T. H., Maurhofer, M. and Keel, C. 2016. Specific surface glycan decorations enable antimicrobial peptide resistance in plant-beneficial Pseudomonads with insect-pathogenic properties. Environ. Microbiol. 18: 4265-4281.   DOI
149 Kulkarni, R. D., Thon, M. R., Pan, H. and Dean, R. A. 2005. Novel Gprotein- coupled receptor-like proteins in the plant pathogenic fungus Magnaporthe grisea. Genome Biol. 6: R24.   DOI
150 Kulkarni, S. 2015. Commercialisation of microbial biopesticides for the management of pests and diseases. In: Recent Advances in the Diagnosis and Management of Plant Diseases, ed. by L. P. Awasthi, pp. 1-10. Springer, New Delhi, India.
151 Kupferschmied, P., Maurhofer, M. and Keel, C. 2013. Promise for plant pest control: root-associated Pseudomonads with insecticidal activities. Front. Plant Sci. 4: 287.
152 Kupferschmied, P., Pechy-Tarr, M., Imperiali, N., Maurhofer, M. and Keel, C. 2014. Domain shuffling in a sensor protein contributed to the evolution of insect pathogenicity in plant-beneficial Pseudomonas protegens. PLoS Pathog. 10: e1003964.   DOI
153 Kwak, K. W., Han, M. S., Nam, S. H., Choi, J. Y., Lee, S. H., Choi, Y. C. and Park, K. H. 2014. Detection of insect pathogen Serratia marcescens in Protaetia brevitarsis seulensis (Kolbe) from Korea. Int. J. Indust. Entomol. 28: 25-31.   DOI
154 Kwak, Y., Khan, A. R. and Shin, J. H. 2015. Genome sequence of Serratia nematodiphila DSM 21420T, a symbiotic bacterium from entomopathogenic nematode. J. Biotechnol. 193: 1-2.   DOI
155 Lacey, L. A. and Georgis, R. 2012. Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J. Nematol. 44: 218-225.
156 Mfuti, D. K., Niassy, S., Subramanian, S., du Plessis, H., Ekesi, S. and Maniania, N. K. 2017. Lure and infect strategy for application of entomopathogenic fungus for the control of bean flower thrips in cowpea. Biol. Control 107: 70-76.   DOI
157 Menezes, C. B., Tonin, M. F., Correa, D. B., Parma, M., de Melo, I. S., Zucchi, T. D., Destefano, S. A. and Fantinatti-Garboggini, F. 2015. Chromobacterium amazonense sp. nov. isolated from water samples from the Rio Negro, Amazon, Brazil. Antonie van Leeuwenhoek 107: 1057-1063.   DOI
158 Meyer, S. L., Everts, K. L., Gardener, B. M., Masler, E. P., Abdelnabby, H. M. and Skantar, A. M. 2016. Assessment of DAPG-producing Pseudomonas fluorescens for management of Meloidogyne incognita and Fusarium oxysporum on watermelon. J. Nematol. 48: 43-53.   DOI
159 Meyer, S. L., Halbrendt, J. M., Carta, L. K., Skantar, A. M., Liu, T., Abdelnabby, H. M. and Vinyard, B. T. 2009. Toxicity of 2,4-diacetylphloroglucinol (DAPG) to plant-parasitic and bacterialfeeding nematodes. J. Nematol. 41: 274-280.
160 Monteiro, F., Carinhas, N., Carrondo, M. J. T., Bernal, V. and Alves, P. M. 2012. Toward system-level understanding of baculovirushost cell interactions: from molecular fundamental studies to large-scale proteomics approaches. Front. Microbiol. 3: 391.
161 Moore, S. D., Kirkman, W., Richards, G. I. and Stephen, P. R. 2015. The Cryptophlebia leucotreta granulovirus-10 years of commercial field use. Viruses 7: 1284-1312.   DOI
162 Moosavi, M. R. and Zare, R. 2012. Fungi as biological control agents of plant-parasitic nematodes. In: Plant Defence: Biological Control, eds. by J. M. Merillon and K. G. Ramawat, pp. 67-107. Springer, Dordrecht, Netherlands.
163 Park, J. O., Hargreaves, J. R., McConville, E. J., Stirling, G. R., Ghisalberti, E. L. and Sivasithamparam, K. 2004. Production of leucinostatins and nematicidal activity of Australian isolates of Paecilomyces lilacinus (Thom) Samson. Lett. Appl. Microbiol. 38: 271-276.   DOI
164 Oliveira, D. F., Campos, V. P., Amaral, D. R., Nunes, A. S., Pantaleão, J. A. and Costa, D. A. 2007. Selection of rhizobacteria able to produce metabolites active against Meloidogyne exigua. Eur. J. Plant Pathol. 119: 477-479.   DOI
165 Ongena, M. and Jacques, P. 2008. Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol. 16: 115-125.   DOI
166 Park, H. I. and Ming, L. J. 2002. Mechanistic studies of the astacinlike Serratia metalloendopeptidase serralysin: highly active (>2000%) Co(II) and Cu(II) derivatives for further corroboration of a "metallotriad" mechanism. J. Biol. Inorg. Chem. 7: 600-610.   DOI
167 Patil, N. G., Kadam, M. S., Patil, V. R. and Chincholkar, S. B. 2013. Insecticidal properties of water diffusible prodigiosin produced by Serratia nematodiphila 213C. Curr. Trends Biotechnol. Pharm. 7: 773-781.
168 Pechy-Tarr, M., Bruck, D. J., Maurhofer, M., Fischer, E., Vogne, C., Henkels, M. D., Donahue, K. M., Grunder, J., Loper, J. E. and Keel, C. 2008. Molecular analysis of a novel gene cluster encoding an insect toxin in plant-associated strains of Pseudomonas fluorescens. Environ. Microbiol. 10: 2368-2386.   DOI
169 Persidis, A., Lay, J. G., Manousis, T., Bishop, A. H. and Ellar, D. J. 1991. Characterisation of potential adhesins of the bacterium Pasteuria penetrans and of putative receptors on the cuticle of Meloidogyne incognita, a nematode host. J. Cell Sci. 100: 613-622.
170 Siddiqui, I. A., Shaukat, S. S., Sheikh, I. H. and Khan, A. 2006. Role of cyanide production by Pseudomonas fluorescens CHA0 in the suppression of root-knot nematode, Meloidogyne javanica in tomato. World J. Microbiol. Biotechnol. 22: 641-650.   DOI
171 Silby, M. W., Winstanley, C., Godfrey, S. A., Levy, S. B. and Jackson, R. W. 2011. Pseudomonas genomes: diverse and adaptable. FEMS Microbiol. Rev. 35: 652-680.   DOI
172 Singh, A. K., Singh, A. and Joshi, P. 2016. Combined application of chitinolytic bacterium Paenibacillus sp. D1 with low doses of chemical pesticides for better control of Helicoverpa armigera. Int. J. Pest Manag. 62: 222-227.   DOI
173 Slininger, P. J. and Shea-Wilbur, M. A. 1995. Liquid-culture pH, temperature and carbon (not nitrogen) source regulate phenazine productivity of the take-all biocontrol agent Pseudomonas fluorescens 2-79. Appl. Microbiol. Biotechnol. 43: 794-800.   DOI
174 Soby, S. D., Gadagkar, S. R., Contreras, C. and Caruso, F. L. 2013. Chromobacterium vaccinii sp. nov., isolated from native and cultivated cranberry (Vaccinium macrocarpon Ait.) bogs and irrigation ponds. Int. J. Syst. Evol. Microbiol. 63: 1840-1846.   DOI
175 St. Leger, R. J., Wang, C. and Fang, W. 2011. New perspectives on insect pathogens. Fungal Biol. Rev. 25: 84-88.   DOI
176 Stehle, S. and Schulz, R. 2015. Agricultural insecticides threaten surface waters at the global scale. Proc. Natl. Acad. Sci. U. S. A. 112: 5750-5755.   DOI
177 Suarez, B., Rey, M., Castillo, P., Monte, E. and Llobell, A. 2004. Isolation and characterization of PRA1, a trypsin-like protease from the biocontrol agent Trichoderma harzianum CECT 2413 displaying nematicidal activity. Appl. Microbiol. Biotechnol. 65: 46-55.
178 Moscardi, F., de Souza, M. L., de Castro, M. E. B., Lara Moscardi, M. and Szewczyk, B. 2011. Baculovirus pesticides: present state and future perspectives. In: Microbes and Microbial Technology: Agricultural and Environmental Applications, eds. by I. Ahmad, F. Ahmad and J. Pichtel, pp. 415-445. Springer, New York, NY, USA.
179 Morita, Y., Matsumura, E., Okabe, T., Shibata, M., Sugiura, M., Ohe, T., Tsujibo, H., Ishida, N. and Inamori, Y. 2003. Biological activity of tropolone. Biol. Pharm. Bull. 26: 1487-1490.   DOI
180 Moscardi, F. 1999. Assessment of the application of baculoviruses for control of Lepidoptera. Annu. Rev. Entomol. 44: 257-289.   DOI
181 Nakai, M. 2009. Biological control of tortricidae in tea fields in Japan using insect viruses and parasitoids. Virol. Sin. 24: 323-332.   DOI
182 Tao, K., Long, Z., Liu, K., Tao, Y. and Liu, S. 2006. Purification and properties of a novel insecticidal protein from the locust pathogen Serratia marcescens HR-3. Curr. Microbiol. 52: 45-49.   DOI
183 Terefe, M., Tefera, T. and Sakhuja, P. K. 2009. Effect of a formulation of Bacillus firmus on root-knot nematode Meloidogyne incognita infestation and the growth of tomato plants in the greenhouse and nursery. J. Invertebr. Pathol. 100: 94-99.   DOI
184 Tian, B., Li, N., Lian, L., Liu, J., Yang, J. and Zhang, K. Q. 2006. Cloning, expression and deletion of the cuticle-degrading protease BLG4 from nematophagous bacterium Brevibacillus laterosporus G4. Arch. Microbiol. 186: 297-305.   DOI
185 Tian, B., Yang, J. and Zhang, K. Q. 2007. Bacteria used in the biological control of plant-parasitic nematodes: populations, mechanisms of action and future prospects. FEMS Microbiol. Ecol. 61: 197-213.   DOI
186 Poopathi, S., Mani, C., Thirugnanasambantham, K., Praba, V. L., Ahangar, N. A. and Balagangadharan, K. 2014. Identification and characterization of a novel marine Bacillus cereus for mosquito control. Parasitol. Res. 113: 323-332.   DOI
187 Phung, le T., Trimble, W. L., Meyer, F., Gilbert, J. A. and Silver, S. 2012. Draft genome sequence of Alcaligenes faecalis subsp. faecalis NCIB 8687(CCUG 2071). J. Bacteriol. 194: 5153.   DOI
188 Pimentel, D. 2009. Environmental and economic costs of the application of pesticides primarily in the United States. In: Integrated Pest Management: Innovation-Development Process, eds. by R. Peshin and A. K. Dhawan, pp. 89-111. Springer, Dordrecht, Netherlands.
189 Pitterna, T., Cassayre, J., Huter, O. F., Jung, P. M., Maienfisch, P., Kessabi, F. M., Quaranta, L. and Tobler, H. 2009. New ventures in the chemistry of avermectins. Bioorg. Med. Chem. 17: 4085-4095.   DOI
190 Popham, H. J., Nusawardani, T. and Bonning, B. C. 2016. Introduction to the use of Baculoviruses as biological insecticides. Methods Mol. Biol. 1350: 383-392.
191 Pramer, D. and Stoll, N. R. 1959. Nemin: a morphogenic substance causing trap formation by predaceous fungi. Science 129: 966-967.   DOI
192 Prasanna, L., Eijsink, V. G., Meadow, R. and Gaseidnes, S. 2013. A novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol potential. Appl. Microbiol. Biotechnol. 97: 1601-1611.   DOI
193 Quesada-Moraga, E., Maranhao, E. A. A., Valverde-Garcia, P. and Santiago-Alvarez, C. 2006. Selection of Beauveria bassiana isolates for control of the whiteflies Bemisia tabaci and Trialeurodes vaporariorum on the basis of their virulence, thermal requirements and toxicogenic activity. Biol. Control 36: 274-287.   DOI
194 Suryawanshi, R. K., Patil, C. D., Borase, H. P., Salunke, B. K. and Patil, S. V. 2014. Studies on production and biological potential of prodigiosin by Serratia marcescens. Appl. Biochem. Biotechnol. 173: 1209-1221.   DOI
195 Sugar, D. R., Murfin, K. E., Chaston, J. M. Andersen, A. W., Richards, G. R., deLeon, L., Baum, J. A., Clinton, W. P., Forst, S., Goldman, B. S., Krasomil-Osterfeld, K. C., Slater, S., Stock, S. P. and Goodrich-Blair, H. 2012. Phenotypic variation and host interactions of Xenorhabdus bovienii SS-2004, the entomopathogenic symbiont of Steinernema jollieti nematodes. Environ. Microbiol. 14: 924-939.   DOI
196 Sun, M. H., Gao, L., Shi, Y. X., Li, B. J. and Liu, X. Z. 2006. Fungi and actinomycetes associated with Meloidogyne spp. eggs and females in China and their biocontrol potential. J. Invertebr. Pathol. 93: 22-28.   DOI
197 Sun, X. 2015. History and current status of development and use of viral insecticides in China. Viruses 7: 306-319.   DOI
198 Szabo, M., Csepregi, K., Galber, M., Viranyi, F. and Fekete, C. 2012. Control plant-parasitic nematodes with Trichoderma species and nematode-trapping fungi: the role of chi18-5 and chi18-12 genes in nematode egg-parasitism. Biol. Control 63: 121-128.   DOI
199 Takeshita, K., Matsuura, Y., Itoh, H., Navarro, R., Hori, T., Sone, T., Kamagata, Y., Mergaert, P. and Kikuchi, Y. 2015. Burkholderia of plant-beneficial group are symbiotically associated with bordered plant bugs (Heteroptera: Pyrrhocoroidea: Largidae). Microbes Environ. 30: 321-329.   DOI
200 Liu, K., Zhang, W., Lai, Y., Xiang, M., Wang, X., Zhang, X. and Liu, X. 2014. Drechslerella stenobrocha genome illustrates the mechanism of constricting rings and the origin of nematode predation in fungi. BMC Genomics 15: 114.   DOI
201 Ramle, M., Wahid, M. B., Norman, K., Glare, T. R. and Jackson, T. A. 2005. The incidence and use of Oryctes virus for control of rhinoceros beetle in oil palm plantations in Malaysia. J. Invertebr. Pathol. 89: 85-90.   DOI
202 Zheng, Z., Zheng, J., Zhang, Z., Peng, D. and Sun, M. 2016b. Nematicidal spore-forming Bacilli share similar virulence factors and mechanisms. Sci. Rep. 6: 31341.   DOI
203 Zimmermann, G. 2008. The entomopathogenic fungi Isaria farinose (formerly Paecilomyces farinosus) and the Isaria fumosorosea species complex (formerly Paecilomyces fumosoroseus): biology, ecology and use in biological control. Biocontrol Sci. Technol. 18: 865-901.   DOI
204 Raetz, C. R. and Whitfield, C. 2002. Lipopolysaccharide endotoxins. Annu. Rev. Biochem. 71: 635-700.   DOI
205 Ramanujam, B., Rangeshwaran, R., Sivakmar, G., Mohan, M. and Yandigeri, M. S. 2014. Management of insect pests by microorganisms. Proc. Indian Nat. Sci. Acad. 80: 455-471.   DOI
206 Ramezani, M. M., Mahdikhani, M. E., Baghaee, R. S. and Rouhani, H. 2014. The first report of Bacillus pumilus influence against Meloidogyne javanica in Iran. J. Crop Prot. 3: 105-112.
207 Rashad, F. M., Fathy, H. M., El-Zayat, A. S. and Elghonaimy, A. M. 2015. Isolation and characterization of multifunctional Streptomyces species with antimicrobial, nematicidal and phytohormone activities from marine environments in Egypt. Microbiol. Res. 175: 34-47.   DOI
208 Raymond, B., Johnston, P. R., Nielsen-LeRoux, C., Lereclus, D. and Crickmore, N. 2010. Bacillus thuringiensis: an impotent pathogen? Trends Microbiol. 18: 189-194.   DOI
209 Regev, A., Rivkin, H., Inceoglu, B., Gershburg, E., Hammock, B. D., Gurevitz, M. and Chejanovsky, N. 2003. Further enhancement of baculovirus insecticidal efficacy with scorpion toxins that interact cooperatively. FEBS Lett. 537: 106-110.   DOI
210 Rehfuss, M. and Urban, J. 2005. Alcaligenes faecalis subsp. phenolicus subsp. nov. a phenol-degrading, denitrifying bacterium isolated from a graywater bioprocessor. Syst. Appl. Microbiol. 28: 421-429.   DOI
211 Roberts, D. W. and St. Leger, R. J. 2004. Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv. Appl. Microbiol. 54: 1-70.
212 Lopez-Llorca, L. V., Macia-Vicente, J. G. and Jansson, H. B. 2008. Mode of action and interactions of nematophagous fungi. In: Integrated Management and Biocontrol of Vegetable and Grain Crops Nematodes, eds. by A. Ciancio and K. G. Mukerji, pp. 51-76. Springer, Dordrecht, Netherlands.
213 Liu, X., Xiang, M. and Che, Y. 2009. The living strategy of nematophagous fungi. Mycoscience 50: 20-25.   DOI
214 Loper, J. E., Henkels, M. D., Rangel, L. I., Olcott, M. H., Walker, F. L., Bond, K. L., Kidarsa, T. A., Hesse, C. N., Sneh, B., Stockwell, V. O. and Taylor, B. J. 2016. Rhizoxin analogs, orfamide A and chitinase production contribute to the toxicity of Pseudomonas protegens strain Pf-5 to Drosophila melanogaster. Environ. Microbiol. 18: 3509-3521.   DOI
215 Lopez-Llorca, L. V. 1990. Purification and properties of extracellular proteases produced by the nematophagous fungus Verticillium suchlasporium. Can. J. Microbiol. 36: 530-537.   DOI
216 Luo, H., Liu, Y., Fang, L., Li, X., Tang, N. and Zhang, K. 2007. Coprinus comatus damages nematode cuticles mechanically with spiny balls and produces potent toxins to immobilize nematodes. Appl. Environ. Microbiol. 73: 3916-3923.   DOI
217 Ma, Z., Geudens, N., Kieu, N. P., Sinnaeve, D., Ongena, M., Martins, J. C. and Hofte, M. 2016. Biosynthesis, chemical structure and structure-activity relationship of orfamide lipopeptides produced by Pseudomonas protegens and related species. Front. Microbiol. 7: 382.
218 Mahajan-Miklos, S., Tan, M. W., Rahme, L. G. and Ausubel, F. M. 1999. Molecular mechanisms of bacterial virulence elucidated using a Pseudomonas aeruginosa-Caenorhabditis elegans pathogenesis model. Cell 96: 47-56.   DOI
219 Wang, C. and St. Leger, R. J. 2007. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects and the MAD2 adhesin enables attachment to plants. Eukaryot. Cell 6: 808-816.   DOI
220 Walker, H. L. and Tilley, A. M. 1997. Evaluation of an isolate of Myrothecium verrucaria from sicklepod (Senna obtusifolia) as a potential mycoherbicide agent. Biol. Control 10: 104-112.   DOI
221 Wang, C. Y., Fang, Z. M., Sun, B. S., Gu, L. J., Zhang, K. Q. and Sung, C. K. 2008. High infectivity of an endoparasitic fungus strain, Esteya vermicola, against nematodes. J. Microbiol. 46: 380-389.   DOI
222 Mark, G., Morrissey, J. P., Higgins, P. and O'gara, F. 2006. Molecularbased strategies to exploit Pseudomonas biocontrol strains for environmental biotechnology applications. FEMS Microbiol. Ecol. 56: 167-177.   DOI
223 Malekan, N., Hatami, B., Ebadi, R., Akhavan, A. and Radjabi, R. 2015. Evaluation of entomopathogenic fungi Beauveria bassiana and Lecanicillium muscarium on different nymphal stages of greenhouse whitefly Trialeurodes vaporariorum in greenhouse conditions. Biharean Biologist 9: 108-112.
224 Maniania, N. K., Ekesi, S., Kungu, M. M., Salifu, D. and Srinivasan, R. 2016. The effect of combined application of the entomopathogenic fungus Metarhizium anisopliae and the release of predatory mite Phytoseiulus longipes for the control of the spider mite Tetranychus evansi on tomato. Crop Protect. 90: 49-53.   DOI
225 Mankau, R., Imbriani, J. L. and Bell, A. H. 1976. SEM observations on nematode cuticle penetration by Bacillus penetrans. J. Nematol. 8: 179-181.
226 Martin, P. A., Blackburn, M. and Shropshire, A. D. 2004. Two new bacterial pathogens of Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol. 97: 774-780.   DOI
227 Martin, P. A., Gundersen-Rindal, D., Blackburn, M. and Buyer, J. 2007b. Chromobacterium subtsugae sp. nov., a betaproteobacterium toxic to Colorado potato beetle and other insect pests. Int. J. Syst. Evol. Microbiol. 57: 993-999.   DOI
228 Martin, P. A., Hirose, E. and Aldrich, J. R. 2007a. Toxicity of Chromobacterium subtsugae to southern green stink bug (Heteroptera: Pentatomidae) and corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol. 100: 680-684.   DOI
229 Martin, P. A. W., Shropshire, A. D. S., Gundersen-Rindal, D. E. and Blackburn, M. B. 2007c. Chromobacterium subtsugae sp. nov. and use for control of insect pests. U.S. Patent US20070172463 A1.
230 Wang, X., Wang, T., Wang, J., Guan, T. and Li, H. 2014. Morphological, molecular and biological characterization of Esteya vermicola, a nematophagous fungus isolated from intercepted wood packing materials exported from Brazil. Mycoscience 55: 367-377.   DOI
231 Wang, Y. B., Wang, C. Y., Wang, Z., Xue, J. J., Li, Z., Li, J. J., Gu, L. J., Hou, J. G., Lee, M. R., Ma, R. S. and Sung, C. K. 2012. Laboratory studies on the development of a conidial formulation of Esteya vermicola. Biocontrol Sci. Technol. 22: 1362-1372.   DOI
232 Waterfield, N., Kamita, S. G., Hammock, B. D. and ffrench-Constant, R. 2005. The Photorhabdus Pir toxins are similar to a developmentally regulated insect protein but show no juvenile hormone esterase activity. FEMS Microbiol. Lett. 245: 47-52.   DOI
233 Weeks, E. N., Machtinger, E. T., Gezan, S. A., Kaufman, P. E. and Geden, C. J. 2017. Effects of four commercial fungal formulations on mortality and sporulation in house flies (Musca domestica) and stable flies (Stomoxys calcitrans). Med. Vet. Entomol. 31: 15-22.   DOI
234 Wei, K., Wang, Q., Wang, Y., Qu, L. and Zhang, Y. 2014. Rapid molecular detection of Esteya vermicola based on specific primers and the FTA-DNA extraction method. Biocontrol Sci. Technol. 24: 872-881.   DOI
235 Weller, D. M. 2007. Pseudomonas biocontrol agents of soilborne pathogens: looking back over 30 years. Phytopathology 97: 250-256.   DOI
236 Weller, D. M., Mavrodi, D. V., van Pelt, J. A., Pieterse, C. M., van Loon, L. C. and Bakker, P. A. 2012. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102: 403-412.   DOI
237 Xia, Y., Xie, S., Ma, X., Wu, H., Wang, X. and Gao, X. 2011. The purL gene of Bacillus subtilis is associated with nematicidal activity. FEMS Microbiol. Lett. 322: 99-107.   DOI
238 Wilkinson, P., Waterfield, N. R., Crossman, L., Corton, C., Sanchez-Contreras, M., Vlisidou, I., Barron, A., Bignell, A., Clark, L., Ormond, D., Mayho, M., Bason, N., Smith, F., Simmonds, M., Churcher, C., Harris, D., Thompson, N. R., Quail, M., Parkhill, J. and ffrench-Constant, R. H. 2009. Comparative genomics of the emerging human pathogen Photorhabdus asymbiotica with the insect pathogen Photorhabdus luminescens. BMC Genomics 10: 302.   DOI
239 Williamson, N. R., Fineran, P. C., Leeper, F. J. and Salmond, G. P. 2006. The biosynthesis and regulation of bacterial prodiginines. Nat. Rev. Microbiol. 4: 887-899.   DOI
240 Wilson, M. J. and Jackson, T. A. 2013. Progress in the commercialisation of bionematicides. BioControl 58: 715-722.   DOI
241 Xia, Z. 2013. Effect of Tween 80 on the production of curdlan by Alcaligenes faecalis ATCC 31749. Carbohydr. Polym. 98: 178-180.   DOI
242 Xu, Y., Orozco, R., Kithsiri Wijeratne, E. M., Espinosa-Artiles, P., Leslie Gunatilaka, A. A., Patricia Stock, S. and Molnar, I. 2009. Biosynthesis of the cyclooligomer depsipeptide bassianolide, an insecticidal virulence factor of Beauveria bassiana. Fungal Genet. Biol. 46: 353-364.   DOI
243 Bangera, M. G. and Thomashow, L. S. 1999. Identification and characterization of a gene cluster for synthesis of the polyketide antibiotic 2,4-diacetylphloroglucinol from Pseudomonas fluorescens Q2-87. J. Bacteriol. 181: 3155-3163.
244 Arthurs, S. P., Lacey, L. A. and de la Rosa, F. 2008. Evaluation of a granulovirus (PoGV) and Bacillus thuringiensis subsp. kurstaki for control of the potato tuberworm (Lepidoptera: Gelechiidae) in stored tubers. J. Econ. Entomol. 101: 1540-1546.   DOI
245 Ash, C., Priest, F. G. and Collins, M. D. 1993. Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 64: 253-260.
246 Avery, P. B., Hunter, W. B., Hall, D. G., Jackson, M. A. and Powell, C. A. 2016. Efficacy of topical application, leaf residue or soil drench of blastospores of Isaria fumosorosea for citrus root weevil management: laboratory and greenhouse investigations. Insects 7: 66.   DOI
247 Becker, J. O. 2014. Plant health management: crop protection with Nematicides. In: Encyclopedia of Agriculture and Food Systems, Vol. 4, ed. by N. K. Van Alfen, pp. 400-407. Elsevier, London, UK.
248 Bhattacharyya, P. N. and Jha, D. K. 2012. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J. Microbiol. Biotechnol. 28: 1327-1350.   DOI
249 Bird, D. M., Opperman, C. H. and Davies, K. G. 2003. Interactions between bacteria and plant-parasitic nematodes: now and then. Int. J. Parasitol. 33: 1269-1276.   DOI
250 Abbas, H. K., Tak, H., Boyette, C. D., Shier, W. T. and Jarvis, B. B. 2001. Macrocyclic trichothecenes are undetectable in kudzu (Pueraria montana) plants treated with a high-producing isolate of Myrothecium verrucaria. Phytochemistry 58: 269-276.   DOI
251 Ahmadian, G., Degrassi, G., Venturi, V., Zeigler, D. R., Soudi, M. and Zanguinejad, P. 2007. Bacillus pumilus SG2 isolated from saline conditions produces and secretes two chitinases. J. Appl. Microbiol. 103: 1081-1089.   DOI
252 Akbulut, N., Tuzlakoglu Ozturk, M., Pijning, T., Issever Ozturk, S. and Gumusel, F. 2013. Improved activity and thermostability of Bacillus pumilus lipase by directed evolution. J. Biotechnol. 164: 123-129.   DOI
253 Book, A. J., Lewin, G. R., McDonald, B. R., Takasuka, T. E., Doering, D. T., Adams, A. S., Blodgett, J. A., Clardy, J., Raffa, K. F., Fox, B. G. and Currie, C. R. 2014. Cellulolytic Streptomyces strains associated with herbivorous insects share a phylogenetically linked capacity to degrade lignocellulose. Appl. Environ. Microbiol. 80: 4692-4701.   DOI
254 Blumer, C. and Haas, D. 2000. Mechanism, regulation and ecological role of bacterial cyanide biosynthesis. Arch. Microbiol. 173: 170-177.   DOI
255 BLW (2015 onwards). Schweizerische Eidgenossenschaft - Bundesamt fur Landwirtschaft. Pflanzenschutzmittelverzeichnis (Stand:16.06.2015). URL https://www.blw.admin.ch/ [13 July 2015].
256 Bonning, B. C. and Nusawardani, T. 2007. Introduction to the use of baculoviruses as biological insecticides. Methods Mol. Biol. 388: 359-366.
257 Borner, H. 2009. Pflanzenkrankheiten und Pflanzenschutz. 8., neu bearbeitete und aktualisierte Auflage. Springer Verlag, Heidelberg, Berlin.
258 Bowen, D. J. and Ensign, J. C. 1998. Purification and characterization of a high-molecular-weight insecticidal protein complex produced by the entomopathogenic bacterium Photorhabdus luminescens. Appl. Environ. Microbiol. 64: 3029-3035.
259 Brand, D., Roussos, S., Pandey, A., Zilioli, P. C., Pohl, J. and Soccol, C. R. 2004. Development of a bionematicide with Paecilomyces lilacinus to control Meloidogyne incognita. Appl. Biochem. Biotechnol. 118: 81-88.   DOI
260 Bravo, A., Likitvivatanavong, S., Gill, S. S. and Soberon, M. 2011. Bacillus thuringiensis: a story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41: 423-431.   DOI
261 Arthurs, S. P. and Lacey, L. A. 2004. Field evaluation of commercial formulations of the codling moth granulovirus: persistence of activity and success of seasonal applications against natural infestations of codling moth in Pacific Northwest apple orchards. Biol. Control 31: 388-397.   DOI
262 Akhtar, M. S. and Siddiqui, Z. A. 2008. Glomus intraradices, Pseudomonas alcaligenes and Bacillus pumilus: effective agents for the control of root-rot disease complex of chickpea (Cicer arietinum L.). J. Gen. Plant Pathol. 74: 53-60.   DOI
263 Ali, M. P., Kato, T. and Park, E. Y. 2015. Improved insecticidal activity of a recombinant baculovirus expressing spider venom cytoinsectotoxin. Appl. Microbiol. Biotechnol. 99: 10261-10269.   DOI
264 Arrizubieta, M., Williams, T., Caballero, P. and Simon, O. 2014. Selection of a nucleopolyhedrovirus isolate from Helicoverpa armigera as the basis for a biological insecticide. Pest Manag. Sci. 70: 967-976.   DOI
265 Fang, W., Azimzadeh, P. and St. Leger, R. J. 2012. Strain improvement of fungal insecticides for controlling insect pests and vector-borne diseases. Curr. Opin. Microbiol. 15: 232-238.   DOI
266 Daborn, P. J., Waterfield, N., Silva, C. P., Au, C. P., Sharma, S. and ffrench-Constant, R. H. 2002. A single Photorhabdus gene, makes caterpillars floppy (mcf), allows Escherichia coli to persist within and kill insects. Proc. Natl. Acad. Sci. U. S. A. 99: 10742-10747.   DOI
267 Decraemer, W., Karanastasi, E., Brown, D. and Backeljau, T. 2003. Review of the ultrastructure of the nematode body cuticle and its phylogenetic interpretation. Biol. Rev. Camb. Philos. Soc. 78: 465-510.   DOI
268 de Freitas, J. R., Banerjee, M. R. and Germida, J. J. 1997. Phosphatesolubilizing rhizobacteria enhance the growth and yield but not phosphorus uptake of canola (Brassica napus L.). Biol. Fertil. Soils 24: 358-364.   DOI
269 Duran, N., Antonio, R. V., Haun, M. and Pilli, R. A. 1994. Biosynthesis of a trypanocide by Chromobacterium violaceum. World J. Microbiol. Biotechnol. 10: 686-690.   DOI
270 Fan, W., Idnurm, A., Breger, J., Mylonakis, E. and Heitman, J. 2007. Eca1, a sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, is involved in stress tolerance and virulence in Cryptococcus neoformans. Infect. Immun. 75: 3394-3405.   DOI
271 [FAO, WFP and IFAD] Food and Agriculture Organization of the United Nations, World Food Programme and International Fund for Agricultural Development. 2012. The State of Food Insecurity in the World. FAO, Rome, Italy. pp. 1-63.
272 Fernandez, C., Rodriiguez-Kabana, R., Warrior, P. and Kloepper, J. W. 2001. Induced soil suppressiveness to a root-knot nematode species by a nematicide. Biol. Control 22: 103-114.   DOI
273 ffrench-Constant, R. and Waterfield, N. 2005. An ABC guide to the bacterial toxin complexes. Adv. Appl. Microbiol. 58C: 169-183.
274 Lam, J. S., Taylor, V. L., Islam, S. T., Hao, Y. and Kocincova, D. 2011. Genetic and functional diversity of Pseudomonas aeruginosa lipopolysaccharide. Front. Microbiol. 2: 118.
275 Larriba, E., Jaime, M. D., Carbonell-Caballero, J., Conesa, A., Dopazo, J., Nislow, C., Martin-Nieto, J. and Lopez-Llorca, L. V. 2014. Sequencing and functional analysis of the genome of a nematode egg-parasitic fungus, Pochonia chlamydosporia. Fungal Genet. Biol. 65: 69-80.   DOI
276 de Oliveira, E. J., Rabinovitch, L., Monnerat, R. G., Passos, L. K. and Zahner, V. 2004. Molecular characterization of Brevibacillus laterosporus and its potential use in biological control. Appl. Environ. Microbiol. 70: 6657-6664.   DOI
277 Brazilian National Genome Project Consortium. 2003. The complete genome sequence of Chromobacterium violaceum reveals remarkable and exploitable bacterial adaptability. Proc. Natl. Acad. Sci. U. S. A. 100: 11660-11665.   DOI
278 Bream, A. S., Ghazal, S. A., Abd el-Aziz, Z. K. and Ibrahim, S. Y. 2001. Insecticidal activity of selected actinomycete strains against the Egyptian cotton leaf worm Spodoptera littoralis (Lepidoptera: Noctuidae). Meded. Rijksuniv. Gent. Fak. Landbouwkd. Toegep. Biol. Wet. 66: 503-512.
279 Degenkolb, T. and Vilcinskas, A. 2016. Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes. Appl. Microbiol. Biotechnol. 100: 3799-3812.   DOI
280 Deng, X., Tian, Y., Niu, Q., Xu, X., Shi, H., Zhang, H., Liang, L., Zhang, K. and Huang, X. 2013. The ComP-ComA quorum system is essential for "Trojan horse" like pathogenesis in Bacillus nematocida. PLoS One 8: e76920.   DOI
281 Devi, K. K. and Kothamasi, D. 2009. Pseudomonas fluorescens CHA0 can kill subterranean termite Odontotermes obesus by inhibiting cytochrome c oxidase of the termite respiratory chain. FEMS Microbiol. Lett. 300: 195-200.   DOI
282 Dong, H., Zhou, X. G., Wang, J., Xu, Y. and Lu, P. 2015. Myrothecium verrucaria strain X-16, a novel parasitic fungus to Meloidogyne hapla. Biol. Control 83: 7-12.   DOI
283 Dowling, A. J., Waterfield, N. R., Hares, M. C., Le Goff, G., Streuli, C. H. and ffrench-Constant, R. H. 2007. The Mcf1 toxin induces apoptosis via the mitochondrial pathway and apoptosis is attenuated by mutation of the BH3-like domain. Cell Microbiol. 9: 2470-2484.   DOI
284 Duarte, R. T., Goncalves, K. C., Espinosa, D. J. L., Moreira, L. F., De Bortoli, S. A., Humber, R. A. and Polanczyk, R. A. 2016. Potential of entomopathogenic fungi as biological control agents of diamondback moth (Lepidoptera: Plutellidae) and compatibility with chemical insecticides. J. Econ. Entomol. 109: 594-601.   DOI
285 Lerouge, I. and Vanderleyden, J. 2002. O-antigen structural variation: mechanisms and possible roles in animal/plant-microbe interactions. FEMS Microbiol. Rev. 26: 17-47.   DOI
286 Lebrigand, K., He, L. D., Thakur, N., Arguel, M. J., Polanowska, J., Henrissat, B., Record, E., Magdelenat, G., Barbe, V., Raffaele, S., Barbry, P. and Ewbank, J. J. 2016. Comparative genomic analysis of Drechmeria coniospora reveals core and specific genetic requirements for fungal endoparasitism of nematodes. PLoS Genet. 12: e1006017.   DOI
287 Lee, J. H., Ma, K. C., Ko, S. J., Kang, B. R., Kim, I. S. and Kim, Y. C. 2011. Nematicidal activity of a nonpathogenic biocontrol bacterium, Pseudomonas chlororaphis O6. Curr. Microbiol. 62: 746-751.   DOI
288 Lee, Y. S. and Kim, K. Y. 2016. Antagonistic potential of Bacillus pumilus L1 against root-knot nematode, Meloidogyne arenaria. J. Phytopathol. 164: 29-39.   DOI
289 Li, G., Zhang, K., Xu, J., Dong, J. and Liu, Y. 2007a. Nematicidal substances from fungi. Recent Pat. Biotechnol. 1: 212-233.   DOI
290 Li, G. H. and Zhang, K. Q. 2014. Nematode-toxic fungi and their nematicidal metabolites. In: Nematode-Trapping Fungi, eds. by K. Q. Zhang and K. D. Hyde, pp. 313-375. Springer, Dordrecht, Netherlands.
291 Li, J., Zou, C., Xu, J., Ji, X., Niu, X., Yang, J., Huang, X. and Zhang, K. Q. 2015. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plantparasitic nematodes. Annu. Rev. Phytopathol. 53: 67-95.   DOI
292 Li, X. Q., Wei, J. Z., Tan, A. and Aroian, R. V. 2007b. Resistance to root-knot nematode in tomato roots expressing a nematicidal Bacillus thuringiensis crystal protein. Plant Biotechnol. J. 5: 455-464.   DOI
293 Liou, J. Y., Shih, J. Y. and Tzean, S. S. 1999. Esteya, a new nematophagous genus from Taiwan, attacking the pinewood nematode (Bursaphelenchus xylophilus). Mycol. Res. 103: 242-248.   DOI
294 Lian, L. H., Tian, B. Y., Xiong, R., Zhu, M. Z., Xu, J. and Zhang, K. Q. 2007. Proteases from Bacillus: a new insight into the mechanism of action for rhizobacterial suppression of nematode populations. Lett. Appl. Microbiol. 45: 262-269.   DOI
295 Liehl, P., Blight, M., Vodovar, N., Boccard, F. and Lemaitre, B. 2006. Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model. PLoS Pathog. 2: e56.   DOI
296 Lin, F., Ye, J., Wang, H., Zhang, A. and Zhao, B. 2013. Host deception: predaceous fungus, Esteya vermicola, entices pine wood nematode by mimicking the scent of pine tree for nutrient. PLoS One 8: e71676.   DOI
297 Liu, H., Qin, S., Wang, Y., Li, W. and Zhang, J. 2008. Insecticidal action of Quinomycin A from Streptomyces sp. KN-0647, isolated from a forest soil. World J. Microbiol. Biotechnol. 24: 2243-2248.   DOI
298 Liu, J. R., Lin, Y. D., Chang, S. T., Zeng, Y. F. and Wang, S. L. 2010. Molecular cloning and characterization of an insecticidal toxin from Pseudomonas taiwanensis. J. Agric. Food Chem. 58: 12343-12349.   DOI
299 ffrench-Constant, R. H., Dowling, A. and Waterfield, N. R. 2007. Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49: 436-451.   DOI
300 Fisher, J. R. and Bruck, D. J. 2008. Biology and control of root weevils on berry and nursery crops in Oregon. Acta Hortic. 777: 345-352.