Browse > Article
http://dx.doi.org/10.5423/RPD.2017.23.1.60

Resistance Evaluation of Radish (Raphanus sativus L.) Inbred Lines against Turnip mosaic virus  

Yoon, Ju-Yeon (Department of Horticultural and Herbal Environment, National Institute of Horticultural and Herbal Science)
Choi, Gug-Seoun (Department of Horticultural and Herbal Environment, National Institute of Horticultural and Herbal Science)
Kim, Su (Department of Vegetables, National Institute of Horticultural and Herbal Science)
Choi, Seung-Kook (Department of Vegetables, National Institute of Horticultural and Herbal Science)
Publication Information
Research in Plant Disease / v.23, no.1, 2017 , pp. 60-64 More about this Journal
Abstract
Leaves of twenties radish (Raphanus sativus L.) inbred lines were mechanically inoculated with Turnip mosaic virus (TuMV) strain HY to evaluate TuMV resistance of the radish inbred lines. The inoculated radish plants were incubated at $22^{\circ}C{\pm}3^{\circ}C$ and resistance assessment was examined using symptom development for 4 weeks. Based on the reactions of differential radish inbred lines, 16 radish lines were produced mild mosaic, mottling, mosaic and severe mosaic symptoms by TuMV infection. These results were confirmed by RT-PCR analysis of TuMV coat protein gene, suggesting that TuMV is responsible for the disease symptoms. Four resistant radish lines did not induce systemic mosaic symptoms on upper leaves and chlorosis in stem tissues for 4 weeks, showing they were symptomless by 8 weeks. Further examination of TuMV infection in the 4 radish lines showed no TuMV infection in all systemic leaves. These results suggest that the 4 radish lines are highly resistant to TuMV.
Keywords
Breeding; Radish; Resistance; RT-PCR; Turnip mosaic virus;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Choi, G. S. and Choi, J. K. 1992. Biological properties of two isolates of turnip mosaic virus isolated from Chinese cabbage and radish in Korea. Korean J. Plant Pathol. 8: 276-280. (In Korean)
2 Chung, J., Han, J. Y., Kim, J., Ju, H., Gong, J., Seo, E. Y., Hammond, J. and Lim, H. S. 2015. Survey of viruses present in radish fields in 2014. Res. Plant Dis. 21: 235-242. (In Korean)   DOI
3 Ham, Y. I. 1995. Recent occurrence of TuMV disease on radish and Chinese cabbage in alpine region, Kangwon province. Plant Dis. Agric. 1: 45-46. (In Korean)
4 Kim, J. S., Lee, S. H., Choi, H. S., Kim, M. K., Kwak, H. R., Kim, J. S., Nam, M., Cho, J. D., Cho, I. S. and Choi, G. S. 2012. 2007-2011 characteristics of plant virus infections on crop samples submitted from agricultural places. Res. Plant Dis. 18: 277-289. (In Korean)   DOI
5 Ku, K. H., Lee, K. A., Kim, Y. L. and Lee, M. G. 2006. Effects of pretreatment method on the surface microbes of radish (Raphanus sativus L.) leaves. J. Korean Soc. Food Sci. Nutr. 3: 649-654. (In Korean)
6 Lee, H. C., Lee, Y. J. and Yang, D. C. 2008. Genetic characterization of mitochondrial DNA in novel CMS radish line. Bull. Nat. Sci. 22: 107-118.
7 Ohshima, K., Tomitaka, Y., Wood, J. T., Minematsu, Y., Kajiyama, H., Tomimura, K. and Gibbs, A. J. 2007. Patterns of recombination in turnip mosaic virus genomic sequences indicate hotspots of recombination. J. Gen. Virol. 88: 298-315.   DOI
8 Ohshima, K., Yamaguchi, Y., Hirota, R., Hamamoto, T., Tomimura, K., Tan, Z., Sano, T., Azuhata, F., Walsh, J. A., Fletcher, J., Chen, J., Gera, A. and Gibbs, A. 2002. Molecular evolution of Turnip mosaic virus: evidence of host adaptation, genetic recombination and geographical spread. J. Gen. Virol. 83: 1511-1521.   DOI
9 Provvidenti, R. 1996. Turnip mosaic potyvirus. In: Viruses of Plants, eds. by A. A. Brunt, K. Crabtree, M. J. Dallwitz, A. J. Gibbs and L. Watson, pp. 1340-1343. CAB International, Wallingford, UK.
10 Raybould, A. F., Maskell, L. C., Edwards, M. L., Copper, J. I. and Gray, A. J. 1999. The prevalence and spatial distribution of viruses in natural populations of Brassica oleracea. New Phytol. 141: 265-275.   DOI
11 Shukla, D. D., Ward, C. W. and Brunt, A. A. 1994. The Potyviridae. CAB International, Wallingford, UK.
12 Tan, Z., Gibbs, A. J., Tomitaka, Y., Sanchez, F., Ponz, F. and Ohshima, K. 2005. Mutations in Turnip mosaic virus genomes that have adapted to Raphanus sativus. J. Gen. Virol. 86: 501-510.   DOI
13 Tomimura, K., Gibbs, A. J., Jenner, C. E., Walsh, J. A. and Ohshima, K. 2003. The phylogeny of Turnip mosaic virus; comparison of 38 genomic sequences reveal a Eurasian origin and a recent 'emergence' in east Asia. Mol. Ecol. 12: 2099-2111.   DOI
14 Walsh, J. A. 1989. Genetic control of immunity to turnip mosaic virus in winter oilseed rape (Brassica napus spp. oleifera) and the effect of foreign isolates of the virus. Ann. Appl. Biol. 115: 89-99.   DOI