Browse > Article
http://dx.doi.org/10.5423/RPD.2016.22.4.227

Nematicidal Activity of Streptomyces flavogriseus KRA15-528 to Meloidogyne incognita  

Oh, Mira (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Han, Jae Woo (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Choi, Jung Sup (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Choi, Yong Ho (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Jang, Kyoung Soo (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Choi, Gyung Ja (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Kim, Hun (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Publication Information
Research in Plant Disease / v.22, no.4, 2016 , pp. 227-235 More about this Journal
Abstract
Plant disease caused by root-knot nematode is a major problem in crop production. Using of chemical pesticides, one of the most efficient methods to control nematodes, have raised issues in toxicity to humans and animals and environmental pollution. In this study, to select actinomycete strains that have potential to serve as a microbial agent for control of nematodes, we investigated nematicidal activity of culture broth from 670 Streptomyces isolates. A culture filtrate of KRA15-528 isolate that was identified as S. flavogriseus on the basis of 16S rRNA sequence analysis, showed strong nematicidal activity against second stage of juveniles of Meloidogyne incognita and inhibited egg hatching; exposure to 10% of culture filtrate resulted in 71% juvenile mortality at 48 hours afters treatment and suppressed egg hatching by 54% at 9 days after treatment. When the KRA15-528 culture filtrate was partitioned with ethyl acetate and butanol, ethyl acetate layer exclusively showed strong activity; 91%, 53%, 30% of mortality at 1,000, 500, $250{\mu}g/ml$, respectively. Additionally, the culture filtrate suppressed gall formation on cucumber plant by M. incognita with no phytotoxicity. These results suggest that S. flavogriseus KRA15-528 has potential to serve as a microbial nematicide for the control of root-knot nematode disease.
Keywords
Biocontrol; Meloidogyne incognita; Nematicidal activity; Streptomyces flavogriseus;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Ruanpanun, P., Laatsch, H., Tangchitsomkid, N. and Lumyong, S. 2011. Nematicidal activity of fervenulin isolated from a nematicidal actinomycete, Streptomyces sp. CMU-MH021, on Meloidogyne incognita. World J. Microbiol. Biotechnol. 27: 1373-1380.   DOI
2 Sahebani, N. and Hadavi, N. 2008. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Soil Biol. Biochem. 40: 2016-2020.   DOI
3 Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
4 Sharon, E., Bar-Eyal, M., Chet, I., Herrera-Estrella, A., Kleifeld, O. and Spiegel, Y. 2001. Biological control of the root-knot nematode Meloidogyne javanica by Trichoderma harzianum. Phytopathology 91: 687-693.   DOI
5 Siddiqui, I. A. and Shaukat, S. S. 2003. Suppression of root-knot disease by Pseudomonas fluorescens CHA0 in tomato: importance of bacterial secondary metabolite, 2, 4-diacetylpholoroglucinol. Soil Biol. Biochem. 35: 1615-1623.   DOI
6 Siddiqui, Z. A. and Mahmood, I. 1999. Role of bacteria in the management of plant parasitic nematodes: a review. Bioresour. Technol. 69: 167-179.   DOI
7 Southey, J. F. 1986. Laboratory Methods for Work with Plant and Soil Nematodes. Ministry of Agriculture Fisheries and Food, Her Majesty's Stationary Office, London, UK. 202 pp.
8 Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30: 2725-2729.   DOI
9 Taylor, A. L. and Sasser, J. N. 1978. Biology, Identification and Control of Root-Knot Nematodes (Meloidogyne species). Department Plant Pathology North Carolina State University and United States Agency for International Development, Raleigh, NC, USA. 111 pp.
10 Tripathi, G. and Rawal, S. K. 1998. Simple and efficient protocol for isolation of high molecular weight DNA from Streptomyces aureofaciens. Biotechnol. Tech. 12: 629-631.   DOI
11 Trudgill, D. L. and Blok, V. C. 2001. Apomictic, polyphagous rootknot nematodes: exceptionally successful and damaging biotrophic root pathogens. Annu. Rev. Phytopathol. 39: 53-77.   DOI
12 Zeng, Q., Huang, H., Zhu, J., Fang, Z., Sun, Q. and Bao, S. 2013. A new nematicidal compound produced by Streptomyces albogriseolus HA10002. Antonie Van Leeuwenhoek 103: 1107-1111.   DOI
13 Watve, M. G., Tickoo, R., Jog, M. M. and Bhole, B. D. 2001. How many antibiotics are produced by the genus Streptomyces? Arch. Microbiol. 176: 386-390.   DOI
14 Williams, S. T. and Davies, F. L. 1967. Use of a scanning electron microscope for the examination of actinomycetes. J. Gen. Microbiol. 48: 171-177.   DOI
15 Williamson, V. M. and Hussey, R. S. 1996. Nematode pathogenesis and resistance in plants. Plant Cell 8: 1735-1745.   DOI
16 Zhao, Z. H., Li, J. Y., Yang, X. Y. and Chu, Y. W. 2003. SIIA-C2191-A and B, novel polycyclic xanthone antibiotics produced by Streptomyces flavogriseus I. Taxonomy, fermentation, isolation and biological activities. Chin. J. Antibiot. 28: 627-632.
17 Kim, S. J., Yu, Y. M. and Whang, K. S. 2014. Molecular identification of Meloidogyne spp. in soils from fruit and vegetable greenhouses in Korea. Korean J. Appl. Entomol. 53: 85-91.   DOI
18 Jang, J. Y., Choi, Y. H., Shin, T. S., Kim, T. H., Shin, K. S., Park, H. W., Kim, Y. H., Kim, H., Choi, G. J., Jang, K. S., Cha, B., Kim, I. S., Myung, E. J. and Kim, J. C. 2016. Biological control of Meloidogyne incognita by Aspergillus niger F22 producing oxalic acid. PLoS One 11: e0156230.   DOI
19 Kerry, B. R. 2000. Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu. Rev. Phytopathol. 38: 423-441.   DOI
20 Kim, K. H., Joe, Y. A., Choi, S. R. and Goo, Y. M. 1989. Comparative studies on streptomycin producing strains and media. Korean J. Biotechnol. Bioeng. 4: 162-166.
21 Kim, S. S., Kang, S. I., Kim, J. S., Lee, Y. S., Hong, S. H., Naing, K. W. and Kim, K. Y. 2011. Biological control of root-knot nematode by Streptomyces sampsonii KK1024. Korean J. Soil Sci. Fertil. 44: 1150-1157.   DOI
22 Lacey, E., Gill, J. H., Power, M. L., Rickards, R. W., O'Shea, M. G. and Rothschild, J. M. 1995. Bafilolides, potent inhibitors of the motility and development of the free-living stages of parasitic nematodes. Int. J. Parasitol. 25: 349-357.   DOI
23 Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valetin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. and Higgins, D. G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947-2948.   DOI
24 Lasota, J. A. and Dybas, R. A. 1991. Avermectins, a novel class of compounds: implications for use in arthropod pest control. Annu. Rev. Entomol. 36: 91-117.   DOI
25 Ghorbel, S., Kammoun, M., Soltana, H., Nasri, M. and Hmidet, N. 2014. Streptomyces flavogriseus HS1: isolation and characterization of extracellular proteases and their compatibility with laundry detergents. BioMed Res. Int. 2014: 345980.
26 Burg, R. W., Miller, B. M., Baker, E. E., Birnbaum, J., Currie, S. A., Hartman, R., Kong, Y. L., Monaghan, R. L., Olson, G., Putter, I., Tunac, J. B., Wallick, H., Stapley, E. O., Oiwa, R. and Omura, S. 1979. Avermectins, new family of potent anthelmintic agents: producing organism and fermentation. Antimicrob. Agents Chemother. 15: 361-367.   DOI
27 Caillaud, M. C., Dubreuil, G., Quentin, M., Perfus-Barbeoch, L., Lecomte, P., de Almeida Engler, J., Abad, P., Rosso, M. N. and Favery, B. 2008. Root-knot nematodes manipulate plant cell functions during a compatible interaction. J. Plant Physiol. 165: 104-113.   DOI
28 Dezfully, N. K. and Ramanayaka, J. G. 2015. Isolation, identification and evaluation of antimicrobial activity of Streptomyces flavogriseus, strain ACTK2 from soil sample of Kodagu, Karnataka State (India). Jundishapur J. Microbiol. 8: e15107.
29 Hesseltine, C. W., Benedict, R. G. and Pridham, T. G. 1954. Useful criteria for species differentiation in the genus Streptomyces. Ann. N. Y. Acad. Sci. 60: 136-151.   DOI
30 Hwang, S. M., Park, M. S., Kim, J. C., Jang, K. S., Choi, Y. H. and Choi, G. J. 2014. Occurrence of Meloidogyne incognita infecting resistant cultivars and development of an efficient screening method for resistant tomato to the Mi-virulent nematode. Korean J. Hortic. Sci. Technol. 32: 217-226. (In Korean)   DOI
31 Jang, J. Y., Choi, Y. H., Joo, Y. J., Kim, H., Choi, G. J., Jang, K. S., Kim, C. J., Cha, B., Park, H. W. and Kim, J. C. 2015. Characterization of Streptomyces netropsis showing a nematicidal activity against Meloidogyne incognita. Res. Plant Dis. 21: 50-57. (In Korean)   DOI
32 Perry, R. N. and Moens, M. 2006. Plant Nematology. 2nd ed. CABI, Boston, MA, USA. 74 pp.
33 McCart, J. P. 2009. Molecular approaches toward resistance to plant-parasitic nematdoes. In: Cell Biology of Plant Nematode Parasitism, eds. by R. H. Berg and C. G. Tayor, pp. 239-267. Springer, St. Louis, MO, USA.
34 Nonaka, K., Tsukiyama, T., Okamoto, Y., Sato, K., Kumasaka, C., Yammoto, T., Maruyama, F. and Yoshikawa, H. 2000. New milbemycins from Streptomyces hygroscopicus subsp. aureolacrimosus: fermantation, isolation and strucutre elucidation. J. Antibiot. 53: 694-704.   DOI
35 Abbott, W. S. 1925. A method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18: 265-267.
36 Akhtar, M. and Malik, A. 2000. Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: a review. Bioresour. Technol. 74: 35-47.   DOI
37 Oka, Y., Koltai, H., Bar-Eyal, M., Mor, M., Sharon, E., Chet, I. and Spiegel, Y. 2000. New strategies for the control of plant-parasitic nematodes. Pest Manag. Sci. 56: 983-988.   DOI
38 Park, M. H., Kim, J. K., Choi, W. H. and Yoon, M. H. 2011. Nematicidal effect of root-knot nematode (Meloidogyne incognita) by biological nematicide. Korean J. Soil Sci. Fertil. 44: 228-235.   DOI
39 Park, M. H., Walpola, B. C., Kim, S. J. and Yoon, M. H. 2012. Control effect of root-knot nematode (Meloidogyne incognita) by biological nematicide. Korean J. Soil Sci. Fertil. 45: 162-168.   DOI
40 Putter, I., Mac Connell, J. G., Preiser, F. A., Haidri, A. A., Ristich, S. S. and Dybas, R. A. 1981. Avermectins: novel insecticides, acaricides and nematicides from a soil microorganism. Experientia 37: 963-964.   DOI
41 Roberts, T. R. and Hutson, D. H. 1999. Metabolic Pathways of Agrochemicals, Part 2: Insecticides and Fungicides. Royal Society of Chemistry, Cambridge, UK. pp. 741-743.
42 Rodriguez-Kabana, R., Morgan-Jones, G. and Chet, I. 1987. Biological control of nematodes: soil amendments and microbial antagonists. Plant Soil 100: 237-247.   DOI
43 Berdy, J. 2005. Bioactive microbial metabolites. J. Antibiot. 58: 1-26.   DOI
44 Barker, K. R., Schmitt, D. P. and Imbriani, J. L. 1985. Nematode population dynamics with emphasis on determining damage potential to crops. In: An Advanced Treatise on Meloidogyne, Volume II: Methodology, eds. by K. R. Barker, C. C. Carter and J. N. Sasser, pp. 135-148. North Carolina State University, Raleigh, NC, USA.