Browse > Article
http://dx.doi.org/10.5423/RPD.2015.21.3.201

Development of an Efficient Simple Mass-Screening Method for Resistant Melon to Fusarium oxysporum f. sp. melonis  

Lee, Won Jeong (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Jang, Kyoung Soo (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Choi, Yong Ho (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Kim, Heung Tae (Department of Plant Medicine, Chungbuk National University)
Kim, Jin-Cheol (Division of Applied Bioscience and Biotechnology, Institute of Environmentally-Friendly Agriculture, Chonnam National University)
Choi, Gyung Ja (Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology)
Publication Information
Research in Plant Disease / v.21, no.3, 2015 , pp. 201-207 More about this Journal
Abstract
This study was conducted to establish a simple mass-screening method for resistant melon to Fusarium wilt caused by Fusarium oxysporum f. sp. melonis (FOM). Root-dipping inoculation method has been used to investigate resistance of melon plants to Fusarium wilt. However, the inoculation method requires a lot of labor and time because of complicate procedure. To develop a simple screening method on melon Fusarium wilt, occurrence of Fusarium wilt on susceptible and resistant cultivars of melon according to inoculation method including root-dipping, soil-drenching, tip, and scalpel methods was investigated. Scalpel and tip methods showed more clear resistant and susceptible responses in the melon cultivars than root-dipping inoculation method, but tip method represented slightly variable disease severity. In contrast, in the case of soil-drenching inoculation method, disease severity of the susceptible cultivars was very low. Thus we selected scalpel method as inoculation method of a simple screening method for melon Fusarium wilt. By using the scalpel inoculation method, resistance degrees of the cultivars according to incubation temperature after inoculation (25 and $30^{\circ}C$) and inoculum concentration ($1{\times}10^6$ and $1{\times}10^7conidia/ml$) were measured. The resistance or susceptibility of the cultivars was hardly affected by all the tested conditions. To look into the effectiveness of scalpel inoculation methods, resistance of 22 commercial melon cultivars to FOM was compare with root-dipping inoculation method. When the melon cultivars were inoculated by scalpel method, resistance responses of all the tested cultivars were clearly distinguished as by root-dipping method. Taken together, we suggest that an efficient simple mass-screening method for resistant melon plant to Fusarium wilt is to sow the seeds of melon in a pot (70 ml of soil) and to grow the seedlings in a greenhouse ($25{\pm}5^{\circ}C$) for 7 days, to cut the root of seedlings with a scalpel and then pour a 10 ml-aliquot of the spore suspension of $1{\times}10^6conidia/ml$ on soil. The infected plants were cultivated in a growth room at 25 to $30^{\circ}C$ for about 3 weeks with 12-hr light a day.
Keywords
Breeding; Disease resistance; Fusarium wilt; Inoculation method; Resistant screening;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Beckman, C. H. 1987. The nature of wilt diseases of plants. APS Press, St. Paul, MN.
2 Cohen, R., Katan, T., Katan, J. and Cohn, R. 1989. Occurrence of Fusarium oxysporum f. sp. melonis race 1,2 on muskmelon in Israel. Phytoparasitica 17: 319-322.   DOI
3 Freeman, S., Zveibil, A., Vintal, H. and Maymon, M. 2002. Isolation of nonpathogenic mutants of Fusarium oxysporum f. sp. melonis for biological control of Fusarium wilt in cucurbits. Phytopathology 92: 164-168.   DOI
4 Gordon, T. R. and Okamoto, D. 1990. Colonization of crop residue by Fusarium oxysporum f. sp. melonis and other species of Fusarium. Phytopathology 80: 381-386.   DOI
5 Herman, R. and Perl-Treves, R. 2007. Characterization and inheritance of a new source of resistance to Fusarium oxysporum f. sp. melonis race 1.2 in Cucumis melo. Plant Dis. 91: 1180-1186.   DOI
6 Iori, I., Ohara, T., Namiki, F. and Tsuge, T. 2001. Isolation of pathogenicity mutants of Fusarium oxysporum f. sp. melonis by insertional mutagenesis. Gen. J. Plant Pathol. 67: 191-199.   DOI
7 Katan, T., Katan, J., Gordon, T. R. and Pozniak, D. 1994. Physiologic races and vegetative compatibility groups of Fusarium oxysporum f. sp. melonis in Israel. Phytopathology 84: 153-153.   DOI
8 Kwon, J. H., Kang, S. W., Son, K. A., Bae, D. W. and Park, C. S. 1999. Gray mold rot on fruit of Cucumis melo var. reticulatus caused by Botrytis cinerea. Kor. J. Mycol. 27: 280-282. (In Korean)
9 Latin, R. X. and Snell, S. J. 1986. Comparison of methods for inoculation of muskmelon with Fusarium oxysporum f. sp. melonis. Plant Dis. 70: 297-300.   DOI
10 Lee, J. M. 1994. Cultivation of grafted vegetables I. Current status, grafting methods, and benefits. HortScience 29: 235-239.
11 Lee. W. J., Lee, J. H., Jang, K. S., Choi, Y. H., Kim, H. T. and Choi, G. J. 2015. Development of efficient screening methods for melon plants resistant to Fusarium oxysporum f. sp. melonis. Kor. J. Hort. Sci. Technol. 33: 70-81. (In Korean)
12 Matsumoto Y., Ogawara, T., Miyagi, M., Watanabe, N. and Kuboyama, T. 2011. Response of wild Cucumis species to inoculation with Fusarium oxysporum f. sp. melonis race 1,2y. Jpn. J. Soc. Hort. Sci. 80: 414-419.   DOI
13 Namiki, F., Shiomi, T., Nishi, K., Kayamura, T. and Tsuge, T. 1998. Pathogenic and genetic variation in the Japanese strains of Fusarium oxysporum f. sp. melonis. Phytopathology 88: 804-810.   DOI
14 Seo, S. T., Park, J. H., Lee, J. S., Han, K. S. and Cheong, S. R. 2006. Bacterial fruit blotch of melon caused by Acidovorax avenae subsp. citrulli. Plant Dis. 12: 185-188.   DOI
15 Park, M. S., Jang, K. S., Choi, Y. H., Kim, J.-C. and Choi, G. J. 2013. Simple mass-screening methods for resistance of tomato to Fusarium oxysporum f. sp. lycopersici. Kor. J. Hort. Sci. Technol. 31: 110-116. (In Korean)
16 Park, S. D., Kwon, T. Y., Lim, Y. S., Jung, K. C. and Choi, B. S. 1996. Disease survey in melon, watermelon, and cucumber with different successive cropping periods under vinylhouse conditions. Kor. J. Plant Pathol. 12: 428-431. (In Korean)
17 Risser, G., Banihashemi, Z. and Davis, D. W. 1976. A proposed nomenclature of Fusarium oxysporum f. sp. melonis races and resistance genes in Cucumis melo. Phytopatholoy 66: 1105-1106.   DOI
18 Sherf, A. F. and MacNab, A. A. 1986. Fusarium wilt of muskmelon. In: Vegetable Diseases and Their Control 2nd ed., pp. 334-337. Wiley, New York .
19 The Korean Society of Plant Pathology (KSPP). 2009. Vegetables. In: List of plant disease in Korea 5th ed., eds. by W.-G. Kim and H. M. Koo, pp. 99-103. KSPP, Suwon, Korea.
20 Traka-Mavrona, E., Koutsika-Sotiriou, M. and Pritsa, T. 2000. Response of squash (Cucurbita spp.) as rootstock for melon (Cucumis melo L.). Sci. Hortic. 83: 353-362.   DOI
21 Yeo, K. H., Jang, Y. A., Kim, S., Um, Y. C., Lee, S. G. and Rhee, H. C. 2013. Evaluation of environment-friendly control agents for the management of powdery mildew infection during seedling stage of three Cucurbitaceae vegetables. Protected Hort. Plant Fac. 22: 413-420.   DOI
22 Zink, F. W., Gubler, W. D. and Grogan, R. G. 1983. Reaction of muskmelon germ plasm to inoculation with Fusarium oxysporum f. sp. melonis race 2. Plant Dis. 67: 1251-1255.   DOI
23 Wellman, F. L. 1939. A technique for studying host resistance and pathogenicity in tomato Fusarium wilt. Phytopathology 29: 945-956.
24 Zhou, X. G. and Everts, K. L. 2007. Characterization of a regional population of Fusarium oxysporum f. sp. niveum by race, cross pathogenicity, and vegetative compatibility. Phytopathology 97: 461-469.   DOI