Browse > Article
http://dx.doi.org/10.5423/RPD.2014.20.3.173

A Review of Detection Methods for the Plant Viruses  

Jeong, Joo-Jin (Department of Agricultural Biology Chonbuk National University)
Ju, Ho-Jong (Department of Agricultural Biology Chonbuk National University)
Noh, Jaejong (Watermelon Experiment Station, Jeollabuk-do Agricultural Research & Extension Services)
Publication Information
Research in Plant Disease / v.20, no.3, 2014 , pp. 173-181 More about this Journal
Abstract
The early and accurate detection of plant viruses is an essential component to control those. Because the globalization of trade by free trade agreement (FTA) and the rapid climate change promote the country-to-country transfer of viruses and their hosts and vectors, diagnosis of viral diseases is getting more important. Because symptoms of viral diseases are not distinct with great variety and are confused with those of abiotic stresses, symptomatic diagnosis may not be appropriate. From the last three decades, enzyme-linked immunosorbent assays (ELISAs), developed based on serological principle, have been widely used. However, ELISAs to detect plant viruses decrease due to some limitations such as availability of antibody for target virus, cost to produce antibody, requirement of large volume of sample, and time to complete ELISAs. Many advanced techniques allow overcoming demerits of ELISAs. Since the polymerase chain reaction (PCR) developed as a technique to amplify target DNA, PCR evolved to many variants with greater sensitivity than ELISAs. Many systems of plant virus detection are reviewed here, which includes immunological-based detection system, PCR techniques, and hybridization-based methods such as microarray. Some of techniques have been used in practical, while some are still under developing to get the level of confidence for actual use.
Keywords
ELISA; PCR; Plant Virus Detection; Symptomatic diagnosis;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Eiken Chemical Co. Ltd. 2005. The principle of LAMP method. http://loop amp.eiken.co.jp/e/lamp/principle.html (Accessed Jul. 24, 2014).
2 El-Araby, S. W., Ibrahin, A. I., Hemeida, A. A., Mahmo, A., Soliman, M. A., El-Attar, K. A. and Mazyad, M. H. 2009. Biological, serological and molecular diagnosis of three major potato viruses in egypt. Int. J. Virol. 5: 77-88.   DOI
3 Ellis, S. D., Boehm, M. J. and Qu, F. 2008. Agriculture and Natural Resources: Viral Diseases of Plants (PP401.05) [Fact Sheet]. Ohio State Univ., Ohio State Univ. Extension. http://ohioline.osu.edu/hyg-fact/3000/pdf /PP401_05.pdf (Accessed Jul. 24, 2014).
4 Eun, A. J., Huang, L., Chew, F., Li, S. F. and Wong, S. 2002. Detection of two orchid viruses using quartz crystal microbalance (QCM) immunosensors. J. Virol. Methods 99: 71-79.   DOI
5 Fegla, G. and Kawanna, M. 2013. Improved indirect ELISA for detection of some plant viruses. Int. J. Agric. Biol. 15: 939-944.
6 Gibson, U. E. M., Heid, C. A. and Williams, P. M. 1996. A novel method for real time quantitative RT-PCR. Genome Res. 6: 995-1001.   DOI   ScienceOn
7 Ham, Y. I. 2003. Review on the occurrence and studies of potato viral diseases in Korea. Res. Plant Dis. 9: 1-9.   DOI
8 Hammond, J. 2011. Universal plant virus microarrays, broad spectrum PCR assays, and other tools for virus detection and identification. Acta Hortic. 901: 49-60.
9 Hancevic, K., Cerni, S., Radic, T. and Skoric, D. 2012. Comparison of different methods for Citrus tristeza virus detection in Satsuma mandarins. J. Plant Dis. Protect. 119: 2-7.   DOI
10 Heid, C. A., Stevens, J., Livak, K. J. and Williams, M. P. 2011. Real time quantitative PCR. Genome Res. 6: 986-994.
11 Helguera, P. R., Docampo, D. M., Nome, S. F. and Ducasse, D. A. 2002. Enhanced detection of Prune dwarf virus in peach leaves by immunocapture-reverse transcription-polymerase chain reaction with nested polymerase chain Reaction (IC-RT-PCR Nested PCR). J. Phytopathol. 150: 94-96.   DOI
12 Helguera, P. R., Taborda, R., Docampo, D. M. and Ducasse, D. A. 2001. Immunocapture reverse transcription-polymerase chain reaction combined with nested PCR greatly increases the detection of Prunus necrotic ring spot virus in the peach. J. Virol. Methods 95: 93-100.   DOI
13 Hull, R. 2002. Matthew's Plant Virology. 4th ed. Academic Press, New York, NY. 1001 pp.
14 Ju, H.-J. 2011. Simple and rapid detection of Potato leafroll virus (PLRV) by reverse transcription loop-mediated isothermal amplification (RT-LAMP). Plant Pathology J. 27: 1-4.   DOI
15 Kfir, R. and Genthe, B. 1993. Advantages and disadvantages of the use of immunodetection techniques for the enumberation of microorganisms and toxins in water. Water Sci. Technol. 27: 243-252.
16 King, A. M. Q., Adams, M. J., Eric, B. C. and Lefkowitz, E. J. 2011. Virus Taxonomy: Ninth Report of the International Committee on Taxonomy of Viruses. Elsevier. San diego, CA. 1339 pp.
17 Kleo, K., Kapp, A., Ascher, L. and Lisdat, F. 2011. Detection of vaccinia virus DNA by quartz crystal microbalance. Anal. Biochem. 418: 260-266.   DOI
18 Klerks, M. M., Leone, G., Lindner, J. L., Schoen, C. D. and ven den Heuvel, J. F. 2001. Rapid and sensitive detection of Apple stem pitting virus in apple trees through RNA amplification and probing with fluorescent molecular beacons. Phytopathology 91: 1085-1091.   DOI
19 Kurosawa, S., Park, J.-W., Aizawa, H., Wakida, S.-I., Tao, H. and Ishihara, K. 2006. Quartz crystal microbalance immunosensors for environmental monitoring. Biosens Bioelectron. 22: 473-481.   DOI   ScienceOn
20 Lee, D., Mura, L. M., Alnutt, R. T. and Powell, W. 2009. Detection of genetically modified organisms (GMOs) using isothermal amplification of target DNA sequences. BMC Biotechnol. 9: 1-7.   DOI
21 Lee, G. P., Min, B. E., Kim, C. S., Choi, S. H., Harn, H. H., Kim, S. U. and Ryu, K. H. 2003. Plant virus cDNA chip hybridization for detection and differentiation of four cucurbit-infecting Tobamoviruses. J. Virol. Methods 110: 19-24.   DOI   ScienceOn
22 Lee, J.-S., Cho, W. K., Lee, S.-H., Choi, H.-S. and Kim, K. H. 2011. Development of RT-PCR based method for detecting five non-reported quarantine plant viruses infecting the family Cucurbitaceae or Solanaceae. Plant Pathology J. 27: 93-97.   과학기술학회마을   DOI   ScienceOn
23 Lee, Y. G. and Chang, K. S. 2005. Application of a flow type quartz crystal microbalance immunosensor for real time determination of cattle bovine ephemeral fever virus in liquid. Talanta 65: 1335-1342.   DOI
24 Leone, G., van Schijndel, H. B., van Genien, B. and Schoen, C. D. 1997. Direct detection of Potato leafroll virus in potato tubers by immunocapture and the isothermal nucleic acid amplification method NASBA. J. Virol. Methods 66: 19-27.   DOI
25 Li, M., Asano, T., Suga, H. and Kageyama, K. 2011. A multiplex PCR for the detection of Phytophthora nicotianae and P. cactorum, and a survey of their occurrence in strawberry production areas of Japan. Plant Dis. 95: 1270-1278.   DOI
26 Lievens, B., Grauwet, T. J. M. A., Cammue, B. P. A. and Thomma, B. P. H. J. 2005. Recent developments in diagnostics of plant pathogens: a review. Recent Res. Dev. Microbiol. 9: 57-79.
27 Makkouk, K. M. and Kumari, S. G. 2006. Molecular diagnosis of plant viruses. Arab. J. Plant Protect. 24: 135-138.
28 Lin, N. S., Hsu, Y. H. and Hsu, H. T. 1990. Immunological detection of plant viruses and a mycoplasma like organism by direct tissue blotting on nitrocellulose membranes. Phytopathology 80: 824-828.   DOI
29 Lopez, M. M., Llop, P., Olmos, A., Marco-Noales, E., Cambra, M. and Bertolini, E. 2008. Are molecular tools solving the challenges posed by detection of plant pathogenic bacteria and viruses?. Curr. Issues Mol. Biol. 11: 13-45.
30 Luminex. 2010. xMAP Technology Technical Note: Overcoming the cost and performance limitations of ELISA with xMAP technology. http://www.luminexcorp.com/prod/ groups/public/documents/lmnxcorp/308-xmap-vs.-elisa-white-paper.pdf (Accessed Jul. 22, 2014).
31 Martos, S., Torres, E., El Bakali, M. A., Raposo, R., Gramaje, D., Armengol, J. and Luque, J. 2011. Co-operational pcr coupled with dot blot hybridization for the detection of Phaeomoniella chlamydospora on infected grapevine wood. J. Phytopathol. 159: 247-254.   DOI
32 Maskos, U. and Southern, E. M. 1992. Oligonucleotide hybridizations on glass supports: a novel linker for oligonucleotide synthesis and hybridization properties of oligonucleotides synthesised in situ. Nucleic Acids Res. 20: 1679-1684.   DOI   ScienceOn
33 McCartney, A. H., Foster, S. J., Fraaige, B. A. and Ward, E. 2003. Molecular diagnostics for fungal plant pathogens. Pest Manag. Sci. 59: 129-142.   DOI
34 Mecea, V. M. 2005. From quartz crystal microbalance to fundamental principles of mass measurements. Anal. Lett. 38: 753-767.   DOI
35 Mecea, V. M. 2006. Is quartz crystal microbalance really a mass sensor? Sens. Act. A 128: 270-277.   DOI
36 Naidua, R. A. and Hughes, J. A. 2001. Methods for the detection of plant virus diseases. In: Proceedings of a Conference Organized by IITA, Plant Virology in Sub Saharan Africa pp. 233-260. International Institute of Tropical Agriculture. Oyo State, Nigeria.
37 Menzel, W., Jelkmann, W. and Maiss, E. 2002. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant mRNA as internal control. J. Virol. Methods 99: 81-92.   DOI   ScienceOn
38 Moreno, A., Bertolini, E., Olmos, A., Cambra, M. and Fereres, A. 2007. Estimation of vector propensity for Lettuce mosaic virus based on viral detection in single aphids. Span. J. Agric. Res. 5: 376-384.   DOI
39 Mumford, R. A., Walsh, K., Barker, I. and Boonham, N. 2000. Detection of Potato moptop virus and Tobacco rattle virus using a multiplex real-time fluorescent reverse transcription polymerase chain reaction assay. Phytopathology 90: 448-453.   DOI
40 Nam, M., Kim, J. S., Lim, S. M., Park, C. Y., Kim, J. G., Choi, F. S., Lim, H. S., Moon, J. S. and Lee, S. H. 2014. Development of the large-scale oligonucleotide chip for the diagnosis of plant viruses and its pracIical use. Plant Pathology J. 30: 51-57.   DOI
41 Nie, X. 2005. Reverse transcription loop-mediated isothermal amplification of DNA for detection of Potato virus Y. Plant Dis. 89: 605-610.   DOI
42 Notomi, T., Okayama, H., Masubuchi, H., Yonekawa, T., Watanabe, K., Amino, N. and Hase, T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. 28:e63 doi: 10.1093/nar/28.12.e63.   DOI
43 Olmos, A., Bertolini, E. and Cambra, M. 2002. Simultaneous and cooperational amplification (Co-PCR): a new concept for detection of plant viruses. J. Virol. Methods 106: 51-59.   DOI
44 Pantaleo, V., Saponari, M. and Gallitelli, D. 2001 Development of a nested PCR protocol for detection of olive-infecting viruses in crude extracts. J. Plant Pathol. 83: 143-146.
45 Olmos, A., Bertolini, E. and Cambra, M. 2007. Isothermal amplification coupled with rapid flow-through hybridisation for sensitive diagnosis of Plum pox virus. J. Virol. Methods 139: 111-115.   DOI
46 Olmos, A., Cambra, M., Esteban, O., Gorris, M. T. and Terrada, E. 1999. New device and method for capture, reverse transcription, and nested PCR in a single closed-tube. Nucleic Acid Res. 27: 1564-1565.   DOI
47 Owen, T. W., Al-Kaysi, R. O., Bardeen, C. J. and Cheng, Q. 2007. Microgravimetric immunosensor for direct detection of aerosolized influenza A virus particles. Sens. Act. B 126: 691-699.   DOI
48 Parida, M., Sannarangaiah, S., Dash, P. K., Rao, P. V. L. and Morita, K. 2008. Loop mediated isothermal amplification (LAMP); a new generation of innovative gene amplification technique; perspectives in clinical diagnosis of infectious diseases. Rev. Med. Virol. 18: 407-421.   DOI   ScienceOn
49 Pearson, M. N., Clover, G. R. G., Guy, P. L., Fletcher J. D. and Beever, R. E. 2006. A review of the plant virus, viroid and mollicute records for New Zealand. Australas. Plant Pathol. 35: 217-252.   DOI
50 Peiman, M. and Xie, C. 2006. Sensitive detetction of potato viruses, PVX, PLRV, and PVS, by RT-PCR in potato leaf and tuber. Australas. Plant Dis. Notes 1: 41-46.   DOI
51 Peter, K. A., Gildow, F., Palukaitis, P. and Gray, S. M. 2009. The C terminus of the Polerovirus P5 readthrough domain limits virus infection to the phloem. J. Virol. 83: 5419-5429.   DOI
52 Plant Viruses. 2003. World of Microbiology and Immunology. http://www.encyclopedia.com/doc/1G2-3409800449.html (Accessed Jul. 20, 2014)
53 Saiki, R. K., Scharf, S., Falcona, F., Mullis, K., Horn, G. T., Erlich, H. A. and Arnheim, N. 1985. Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230: 1350-1354.   DOI
54 Qu, X. S., Wanner, L. A. and Christ, B. J. 2011. Multiplex real-time PCR (TaqMan) assay for the simultaneous detection and discrimination of potato powdery and common scab diseases and pathogens. J. Appl. Microbiol. 110: 769-777.   DOI
55 Ruiz-Ruiz, S., Moreno, P., Jose, G. and Ambros, S. 2007. A real-time RT-PCR assay for detection and absolute quantitation of Citrus tristeza virus in different plant tissues. J. Virol. Methods 145: 96-105.   DOI
56 Saiki, R., Gelfand, D., Stoffel, S., Scharf, S., Higuchi, R., Horn, G., Mullis, K. and Erlich, H. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487-491.   DOI
57 Schaad, N. W. and Frederick, R. D. 2002. Real-time PCR and its application for rapid plant disease diagnostics. Can. J. Plant Pathol. 24: 250-258.   DOI
58 Schena, M., Shalon, D., Davis, R. W. and Brown, P. O. 1995. Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467-470.   DOI
59 Scholthof, K.-B. G. 2000. Tobacco mosaic virus. The Plant Health Instructor. http://www.apsnet.org/edcenter/intropp/lessons/viruses/Pages/Tob accoMosaic.aspx (Accessed Jul. 20, 2014).
60 Shang, H., Xie, Y., Zhou, X., Qian, Y. and Wu, J. 2011. Monoclonal antibody-based serological methods for detection of Cucumber green mottle mosaic virus. Virol. J. 8: 228-234.   DOI
61 Strange, R. N. 2005. Plant disease: a threat to global food security. Annu. Rev. Phytopathol. 43: 83-116.   DOI   ScienceOn
62 Shiobara, Y., Yoshino, M., Uragami, A., Widiastuti, A., Omori, A., Kuba, K., Saito, H., Hirata, Y., Sonoda, T., Koizumi, T. and Sato, T. 2011. Sex distinction of asparagus by loop-mediated isothermal amlification and observation of seedling phenotypes. Euphytica 177: 91-97.   DOI
63 Singh, P. R., Dilworth, D. A., Singh, M. and McLaren, L. D. 2004. Evaluation of simple membrane-based nucleic acid preparation protocol for RT-PCR detection of potato viruses from aphid and plant tissues. J. Virol. Methods 121: 163-170.   DOI
64 Singh, R. P., Nie, X. and Singh, M. 2000. Duplex RT-PCR: reagent concentrations at reverse transcription stage affect the PCR performance. J. Virol. Methods 86: 121-129.   DOI
65 Sun, W., Jiao, K., Zhang, S., Zhang, C. and Zhang, Z. 2001. Electrochemical detection for horseradish peroxidase-based enzyme immunoassay using p-aminophenol as substrate and its application in detection of plant virus. Anal. Chim. Acta 434: 43-50.   DOI   ScienceOn
66 Susmel, S., O'Sullivan, C. K. and Guilbault, G. G. 2000. Human cytomegalovirus detection by a quartz crystal microbalance immunosensor. Enzyme Microb. Tech. 27: 639-645.   DOI
67 Tang, D.-Q., Zhang, D.-J., Tang, D.-Y. and Ai, H. 2006. Amplification of the antigen-antibody interaction from quartz crystal microbal ance immunosensors via back-filling immobilization of nanogold on biorecognition surface. J. Immunol. Methods 316: 144-152.   DOI
68 Tomita, N., Mori, Y., Kanda, H. and Notomi, T. 2008. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of product. Nature Protoc. 3: 877-882.   DOI   ScienceOn
69 Torrance, L. 1998. Developments in serological methods to detect and identify plant viruses. Plant Cell Tiss. Org. Cult. 52: 27-32.   DOI
70 Tomlinson, J. A., Boonham, N. and Dickinson, M. 2010. Development and evaluation of a one-hour DNA extraction and loopmediated isothermal amplification assay for rapid detection of phytoplasmas. Plant Pathol. 59: 465-471.   DOI
71 Uttenthaler, E., Schraml, M., Mandel, J. and Drost, S. 2001. Ultrasensitive quartz crystal microbalance sensors for detection of M13-Phages in liquids. Biosens. Bioelectron. 16: 735-743.   DOI
72 van der Want, J. P. H. and Dijkstra, J. 2006. A history of plant virology. Arch. Virol. 151:1467-1498.   DOI
73 Vaskova, D., Spak, J., Klerks, M. M., Schoen, C. D., Thompson, J. R. and Jelkmann, W. 2004. Real-time NASBA for detection of Strawberry vein banding virus. Eur. J. Plant Pathol. 110: 213-221.   DOI
74 Vemulapati, B., Druffel, K. L., Husebye, D., Eigenbrode, S. D. and Pappu, H. R. 2014. Development and application of ELISA assays for the detection of two members of the family Luteoviridae infecting legumes: Pea enation mosaic virus (genus Enamovirus) and Bean leafroll virus (genus Luteovirus). Annu. Appl. Biol. 165: 130-136.   DOI
75 Vidaver, A. K. and Lambrecht, P. A. 2004. Bacteria as plant pathogens. The Plant Health Instructor. www.apsnet.org/.../PathogenGroups/Pages/Bacteria.aspx (Accessed Jul. 20, 2014).
76 Wang, B., Ma, Y., Zhang, Z., Wu, Z., Wu, Y., Wanga, Q. and Li, M. 2011. Potato viruses in China. Crop Protect. 30: 1117-1123.   DOI
77 Wang, D., Coscoy, L., Zylberberg, M., Avila, P. C., Boushey, H. A. and Ganem, D. 2002. Microarray-based detection and genotyping of viral pathogens. Proc. Natl. Acad. Sci. 99: 15687-15692.   DOI   ScienceOn
78 Yang, J.-G., Wang, F.-L., Chen, D.-X., Shen, L.-L., Qian, Y.-M., Liang, J. Y., Zhou, W.-C. and Yan, T.-H. 2012. Development of a one-step immunocapture real-time RT-PCR assay for detection of Tobacco Mosaic Virus in Soil. Sensors 12: 16685-16694.   DOI
79 Wang, D., Urisman, A., Liu, Y. T., Springer, M., Ksiazek, T. G., Erdman, D. D., Mardis, E. R., Hickenbotham, M., Magrini, V., Eldred, J., Latreille, J. P., Wilson, R. K., Ganem, D. and DeRisi, J. L. 2003. Viral discovery and sequence recovery using DNA microarrays. PLoS Biol. 1: 257-260.
80 Webster, C. G., Wylie, J. S. and Jones, M. G. K., 2004. Diagnosis of plant viral pathogens. Curr. Sci. 86: 1604-1607.
81 Yardimci, B. C. N. and Culal-Klllc, H. 2011. Detection of viruses infecting stone fruits in Western mediterranean region of Turkey. Plant Pathology J. 27: 44-52.   과학기술학회마을   DOI
82 Zan, X., Sitasuwana, P., Powellb, J., Dreherb, T. W. and Wang, Q. 2012. Polyvalent display of RGD motifs on Turnip yellow mosaic virus for enhanced stem cell adhesion and spreading. Acta Biomater. 8: 2978-2985.   DOI
83 Zhang, Y., Yin, J., Li, G., Li, M., Huang, X., Chen, H., Zhao, W. and Zhu, S. 2010. Oligonucleotide microarray with a minimal number of probes for the detection and identification of thirteen genera of plant viruses. J. Virol. Methods 167: 53-60.   DOI   ScienceOn
84 Becker, B. and Cooper, M. A. 2011. A survey of the 2006-2009 quartz crystal microbalance biosensor literature. J. Mol. Recognit. 24: 754-787.   DOI
85 Aboul-Ata, A. E., Mazyad, H., El-Attar, A. K., Soliman, A. M., Anfoka, G., Zeidaen, M., Gorovits, R., Sobol, I. and Czosnek, H. 2011. Diagnosis and control of cereal viruses in the Middle East. Adv. Virus Res. 81: 33-61.   DOI
86 Adkar-Purushothama, C. J., Maheshwar, P. K., Sano, T. and Janardhana, G. R. 2011. A sensitive and reliable RT-nested PCR assay for detection of Citrus tristeza virus from naturally infected citrus plants. Curr. Microbiol. 62: 1455-1459.   DOI
87 Adkins, S., Webb, S. E., Baker, C. A., Baker, C. A. and Kousik, C. S. 2008. Squash vein yellowing virus detection using nested polymerase chain reaction demonstrates that the Cucurbit weed Momordica charantia is a reservoir host. Plant Dis. 92: 1119-1123.   DOI
88 Agrios, G. N. 2005. Plant Pathology. 5th ed. Elsvier, New York, NY. 922 pp.
89 Bachelder, E., Ainslie, K. and Pishko, M. 2005. Utilizing a quartz crystal microbalance for quantifying $CD_4^+$ Tcell counts. Sensor Lett. 3: 211-215.   DOI
90 Bertolini, E., Torres, E., Olmos, A., Martin, M. P., Bertaccini, A. and Cambra, M. 2007. Co-operational PCR coupled with dot blot hybridization for detection and 16SrX grouping of phytoplasmas. Plant Pathol. 56: 677-682.   DOI
91 Boonham, N., Kreuze, J., Winter, S., Van der Vlugt, R., Bergervoet, J., Tomilinson, J. and Mumford, R. 2014. Methods in virus diagnostics: From ELISA to next generation sequencing. Virus Res. 186: 20-31.   DOI
92 Boonham, N., Tomilinson, J. and Mumford, R. 2007. Microarrays for Rapid Identification of Plant Viruses. Annu. Rev. Phytopathol. 45: 307-328.   DOI
93 Bystricka, D., Lenza, O., Mraza, I., Piherovad, L., Kmochd, S. and Sipc, M. 2005. Oligonucleotide-based microarray: A new improvement in microarray detection of plant viruses. J. Virol. Methods 128: 176-182.   DOI
94 Capote, N., Bertolini, E., Olmos, A., Vidal, E., Martinez, M. C. and Cambra, M. 2009. Direct sample preparation methods for the detection of Plum pox virus by real-time RT-PCR. Int. Microbiol. J. 12: 1-6.
95 Caruso, P., Bertolini, E., Cambra, M. and Lopez, M. M. 2003. A new and sensitive Co-operational polymerase chain reaction (Co-PCR) for a rapid detection of Ralstonia solanacearum in water. J. Microbiol. Methods 55: 257-272.   DOI   ScienceOn
96 Corning Life Science. 2001. Selecting the detection System: Colorimetric, Fluorescent, Luminescent Methods. ELISA Technical Bulletin 5:p14 http://catalog2.corning.com/Lifesciences/media/pdf/elisa5.pdf (Accessed Jul. 24, 2014).
97 Chen, Z.-G. and Tang, D.-Y. 2007. Antigen-antibody interaction from quartz crystal microbalance immunosensors based on magnetic CoFe2O4/SiO2 compositenanoparticle-functionalized biomimetic interface. Bioproc. Biosyst. Eng. 30: 243-249.   DOI
98 Cho, H., Kang, J. and Park, N. 2006. Detection of canine parvovirus in fecal samples using loop-mediated isothermal amplification. J. Vet. Diagn. Invest. 18: 81-84.   DOI   ScienceOn
99 Compton, J. 1991. Nucleic acid sequence-based amplification. Nature 350: 91-92.   DOI   ScienceOn
100 Dickert, F. L., Hayden, O., Bindeus, R., Mann, K., Blaas, D. and Waigmann, E. 2004. Bioimprinted QCM sensors for virus detection screening of plant sap. Anal. Bioanal. Chem. 378: 1929-1934.   DOI
101 Drygin, Y. F., Blintsov, A. N., Grigorenko, V. G., Andreena, I. P., Opsipov, A. P., Varitzev, Y. A., Uskov, A. I., Kravchenko, D. V. and Atabekov, J. G. 2012. Highly sensitive field test lateral flow immunodiagnostics of PVX infection. Appl. Microbiol. Biotechnol. 93: 179-189.   DOI
102 Dugat-Bony, E., Peyretaillade, E., Parisot, N., Biderre-Petit, C., Jaziri, F., Hill, D., Rimour, S. and Peyret, P. 2012. Detecting unknown sequences with DNA microarrays : explorative probe design strategies. Environ. Microbiol. 14: 356-371.   DOI
103 Eid, S., Atamian, H. S., Abou-Jawdah, Y. and Havey, M. J. 2008. Assessing the movement of Cucurbit yellow stunting disorder virus in susceptible and tolerant cucumber germplasms using serological and nucleic acid based methods. J. Phytopathol. 156: 438-445.   DOI
104 Su, C. C., Wu, T. Z., Chen, L. K., Yang, H. H. and Tai, D. F. 2003. Development of immunochips for the detection of dengue viral antigens. Anal. Chim. Acta 479: 117-123.   DOI   ScienceOn
105 Bove, J. M., Vogel, R., Albertini, D. and Bove, J. M. 1988. Discovery of a strain of Tristeza virus (K) inducing no symptoms in Mexican lime. Proceedings of the 10th Conference of IOCV. Spain 1988. International Organization of Citrus Virologists Riverside, CA. pp. 14-16.
106 Clark, M. F. and Adamas, A. N. 1977. Characteristic of the microplate of enzyme-linked immunosorbent assay for the detection of plant viruses. J. Gen. Virol. 34: 475-483.   DOI   ScienceOn
107 Ruiz-Ruiz, S., Ambros, S., del Carmen Vives, M., Navarro, L., Moreno, P. and Jose, G. 2009. Detection and quantitation of Citrus leaf blotch virus by TaqMan real-time RT-PCR. J. Virol. Methods 160: 57-62.   DOI