Browse > Article
http://dx.doi.org/10.5423/RPD.2008.14.2.117

Economic Threshold of Meloidogyne incognita for Greenhouse Grown Cucumber in Korea  

Kim, Dong-Geun (Department of Agricultural Environment, Gyeongbuk Agriculture Technology Administration)
Lee, Joong-Hwan (Department of Agricultural Environment, Gyeongbuk Agriculture Technology Administration)
Publication Information
Research in Plant Disease / v.14, no.2, 2008 , pp. 117-121 More about this Journal
Abstract
To determine the economic threshold level of Meloidogyne incognita on cucumber in greenhouse conditions, cucumber seedlings(Cucumis sativa L. cv. 'Super Manchon') grafted on 'Jangsushintozoa'(Cucurbita maxima x Cu. moschata) were planted in wooden boxes($30{\times}40{\times}15cm,\;L{\times}W{\times}D$) under a plastic house in August 01 and harvested from Sep. 01-Oct. 30, 2006. The initial nematode population densities(Pi) in the wooden boxes were adjusted to 0, 10, 30, 100, 300, and 600 second-stage juveniles(J2)/100 $cm^3$ soil. The relationship of total fruit yield to Pi level could be adequately described by a linear regression equation, $Y=0.82-0.04{\cdot}Log_{10}$(Pi+1). Initial nematode densities(Pi) before planting in excess of 5 J2/1,000 $cm^3$ soil caused in total yields loss that is equivalent to the costs of granular nematicide application; Pi level in excess of 25 J2/1,000 $cm^3$ soil caused in total yields loss that exceed the costs for application of fumigants at current control costs. We propose two different management strategies depending on nematode densities, (i) application of non-fumigant granular nematicides for M. incognita Pi level of 5 J2/1,000 $cm^3$ soil and (ii) fumigant treatment with Pi level over 25 J2/1,000 $cm^3$ soil. Soil samples to determine population density of Meloidogyne spp. for advisory purposes should be taken several months before planting time, which allows a period of time enough for implementing management procedures.
Keywords
Cucumber; Cucumis sativa; Economic threshold; Meloidogyne incognita; Population density;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Griffin, G. D. 1981. The relationship of plant age, soil temperature, and population density of Heterodera schachtii on the growth of sugarbeet. J. Nematol. 13: 184-190
2 Kim, D. G. 2001b. Distribution and population dynamics of Meloidogyne arenaria on oriental melon (Cucumis melo L.) under greenhouse conditions in Korea. Russian J. Nematol. 9: 61-68
3 Kim, D. G. and Ferris, H. 2002. Relationship between crop losses and initial population densities of Meloidogyne arenaria. J. Nematol. 34: 43-49
4 Main, C. E. and Byrne, S. V. Eds. 1986. 1985 estimates of crop losses in North Carolina due to plant diseases and nematodes. Dept. of Plant Pathol. Special Publ. No. 5. North Carolina State University, Raleigh
5 National Agricultural Products Quality management Service. 2008. http://www.naqs.go.kr/statisticsInfo/statisticsInfo_02_ 1_1.jsp
6 Roberts, P. A., Van Gundy, S. D. and McKinney, H. E. 1981. Effects of soil temperature and planting date of wheat on Meloidogyne incognita reproduction, soil populations, and grain yield. J. Nematol. 13: 338-345
7 농촌진흥청. 2006. 2005소득자료 전국 2 (작목별경영비 및 소득). 92 pp
8 Park, S. D., Kwon, T. Y., Jun, H. S. and Choi, B. S. 1995. The occurrence and severity of damage by root-knot nematode (Meloidogyne incognita) in controlled fruit vegetable field. Rural Dev. Admin., J. Crop Prot. 37: 318-323
9 Barker, K. R., Schmitt, D. O. and Imbriani, J. L. 1985. Nematode population dynamics with emphasis on determining damage potential to crops. In: An Advance Treatise on Meloidogyne. Vol. I. Biology pp. 135-148. North Carolina State University. Raleigh, NC, USA
10 Kim, J. Y., Hong, S. S., Lee, J. G., Park, K. Y., Kim, H. G. and Kim, J. W. 2006. Detreminants of economic threshold for powdery mildew on cucumber. Res. Plant Pathol. 12: 231-234
11 Cho, M. R., Lee, B. C., Kim, D. S., Jeon, H. Y., Yiem, M. S. and Lee, J. O. 2000. Distribution of plant-parasitic nematodes in fruit vegetable production areas in Korea and identification of root-knot nematodes by enzyme phenotypes. Kor. J. Appl. Entomol. 39: 123-129   과학기술학회마을
12 Mein, S., H., Wallace, R. and Fisher, J. M. 1978. Water relations of tomato (Lycopersicon esculentum Mill. cv. early Dwarf red) infected with Meloidogyne javanica (Treub) Chitwood. Physiol. Plant Pathol. 13: 275-281   DOI
13 Ferris, H. 1978. Nematode economic thresholds: Derivation, requirements, and theoretical implications. J. Nematol. 10: 341-350
14 Cooke, D. A. and Thomason, I. J. 1979. The relationship between population density of Heterodera schachtii, soil temperature, and sugarbeet yield. J. Nematol. 11: 124-128
15 Barker, K. R. 1985. Nematode extraction and bioassays. In: An Advance Treatise on Meloidogyne. Vol. II. Methodology pp. 19-35. North Carolina State University. Raleigh, NC, USA
16 Seoul Agricultural & Marine Products Corp. 2008. http://www. garak.co.kr/united/index.jsp
17 Kim, D. G. 2001a. Occurrence of root-knot nematodes on fruit vegetables under greenhouse conditions in Korea. Res. Plant Pathol. 7: 69-79
18 Barker, K. R. 1982. Influence of soil moisture, cultivar, and population density of Meloidogyne incognita on soybean yield in plots. J. Nematol. 14: 429 (Abstr.)
19 Yeon, I. K., Kim, D. G. and Park, S. D. 2003. Soil temperature and egg mass formation by Meloidogyne arenaria on oriental melon (Cucumis melo L.). Nematol. 5: 721-725   DOI   ScienceOn
20 SAS. 1990. SAS/STAT User's guide. Version 6. SAS Institute Inc., Cary, NC
21 Southey, J. F. 1986. Laboratory methods for work with plant and soil nematodes. London: Her Majesty's Stationery Office
22 Heald, C. M. 1987. Classical nematode management practices. In: Vistas on nematology. Eds. by J. A. Veech and D. W. Dickson. pp. 100-105. Soc. of Nematol. Maryland. 509 pp