Browse > Article
http://dx.doi.org/10.11110/kjpt.2019.49.2.127

Exploring natural hybridizations among Asplenium ruprechtii and related taxa in Korea  

LEE, Chang Shook (Department of Science Education, Ewha Womans University)
YEAU, Sung Hee (Department of Science Education, Ewha Womans University)
CHUNG, Kyong-Sook (Department of Medicinal Plant Science, Jungwon University)
Publication Information
Korean Journal of Plant Taxonomy / v.49, no.2, 2019 , pp. 127-139 More about this Journal
Abstract
The purported four hybrid origins of Asplenium in Korea were tested based on morphological, cytological and DNA sequence data. Asplenium castaneo-viride, A. ${\times}$ uiryeongse, A. ${\times}$ montanus, and A. ${\times}$ kitazawae share several morphological characteristics with the Asian walking fern A. ruprechtii and related taxa as parents and show a sympatric distribution with the putative parents, raising the possibility of hybrid origins: A. castaneo-viride (A. ruprechtii and A. incisum), A. ${\times}$ uiryeongse (A. ruprechtii and A. pekinense), A. ${\times}$ montanus (A. ruprechtii, A. trichomanes, and A. incisum), and A. ${\times}$ kitazawae (A. ruprechtii and A. sarelii). We investigated flow cytometry and chloroplast DNA sequence data (rbcL, rps4-trnS, and rps4-trnS intergenic spacer) to clarify the hybridization and origin of each hybrid. In the flow cytometry analyses, A. ruprechtii shows diploid (2x) only, whereas A. castaneo-viride (3x, 4x), A. ${\times}$ uiryeongse (3x), A. ${\times}$ montanus (3x, 4x), and A. ${\times}$ kitazawae (2x, 4x) exhibit polyploidy, suggesting hybrid events along speciation. The rbcL and rps4-trnS and rps4-trnS intergenic spacer data suggest that A. ruprechtii is one the maternal ancestors of all four hybrids. In addition, the rps4-trnS and rps4-trnS intergenic spacer data indicate that A. incisum is also the maternal ancestor of A. ${\times}$ kitazawae and A. ${\times}$ montanus, proposing multiple hybridization events for these two hybrids. In A. ${\times}$ montanus, morphological features such as the leaf forms and sympatric distributions of the species also support the multimaternal hypothesis, but the morphological features of A. ${\times}$ kitazawae must be examined with consideration of hybrid events. To clarify the complex hybrid evolutionary lineages of the four Asplenium hybrids, further research with taxon sampling and molecular markers should be conducted.
Keywords
Asplenium ruprechtii; Asplenium hybrids; hybrid origin; cpDNA; flow cytometry; Aspleniaceae;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Cronn, R., R. L. Small, T. Haselkorn and J. F. Wendel. 2003. Cryptic repeated genomic recombination during speciation in Gossypium gossypioides. Evolution 57: 2475-2489.   DOI
2 Dolezel, J. and J. Bartos. 2005. Plant DNA flow cytometry and estimation of nuclear genome size. Annals of Botany 95: 99-110.   DOI
3 Ebihara, A., H. Ishikawa, S. Matsumoto, S.-J. Lin, K. Iwatsuki, M. Takamiya, Y. Watano and M. Ito. 2005. Nuclear DNA, chloroplast DNA, and ploidy analysis clarified biological complexity of the Vandenboschia radicans complex (Hymenophyllaceae) in Japan and adjacent areas. American Journal of Botany 92: 1535-1547.   DOI
4 Ekrt, L. and M. Stech. 2008. A morphometric study and revision of the Asplenium trichomanes group in the Czech Republic. Preslia 80: 325-347.
5 Ellstrand, N. C., L. C. Garner, S. Hegde, R. Guadagnuolo and L. Blancas. 2007. Spontaneous hybridization between maize and teosinte. Journal of Heredity 98: 183-187.   DOI
6 Farris J. S., M. Kallersjo, A. G. Kluge and C. Bult. 1994. Testing significance of incongruence. Cladistics 10: 315-319.   DOI
7 Farris J. S., M. Kallersjo, A. G. Kluge and C. Bult. 1995. Constructing a significance test for incongruence. Systematic Biology 44: 570-572.   DOI
8 Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783-791.   DOI
9 Gibson, T., D. Higgins and J. Thompson. 1994. Clustal X Program. EMBL, Heidelberg, Germany.
10 Grant, V. 1981. Plant Speciation. Columbia University Press, New York, 432 pp.
11 Hasebe, M., P. G. Wolf, K. M. Pryer, K. Ueda, M. Ito, R. Sano, G. J. Gastony, J. Yokoyama, J. R. Manhart, N. Murakami, E. H. Crane, C. H. Haufler and W. D. Hauk. 1995. Fern phylogeny based on rbcL nucleotide sequences. American Fern Journal 85: 134-181.   DOI
12 Lee, C. S. and K. Lee. 2015. Pteridophytes: Lycophytes & Ferns. Geobook, Seoul, 471 pp. (in Korean)
13 Hennequin, S., A. Ebihara, M. Ito, K. Iwatsuki and J.-Y. Dubuisson. 2003. Molecular systematics of the fern genus Hymenophyllum s.l. (Hymenophyllaceae) based on chloroplastic coding and noncoding regions. Molecular Phylogenetics and Evolution 27: 283-301.   DOI
14 Iwatsuki, K. 1995. Aspleniaceae. In Flora of Japan. Vol. 1. Iwatsuki, K., T. Yamazaki, D. E. Boufford and H. Ohba (eds.), Kodansha Ltd., Tokyo, 302 pp.
15 Jessen, S. 1995. Asplenium trichomanes subsp. hastatum, stat. nov. - eine neue Unterate des Braunstiel-Streifenfarnes in Europa und vier neue intraspezifische Hybriden (Aspleniaceae, Pteridophyta). Berichte der Bayerischen Botanischen Gesellschaft zur Erforschung der heimischen Flora 65: 107-132.
16 Kim, C. H. and B.-Y. Sun. 2007. Aspleniaceae. In The Genera of Vascular Plants of Korea. Park, C.-W. (ed.), Academy Publishing Co., Seoul, 1482 pp.
17 Kwon, Y. J., C. H. Kim, J. K. Ahn and B.-Y. Sun. 2009. Analysis of hybridity of Asplenium castaneo-viride Baker. Korean Journal of Plant Taxonomy 39: 12-23.   DOI
18 Lee, C. S. and K. Lee. 2018. Pteridophytes: Lycophytes & Ferns. 2nd. Geobook, Seoul, 491 pp. (in Korean)
19 Lee, C. S., K. Lee., S. H. Yeau and K.-S. Chung. 2015. Two new and one unrecorded natural hybrids between Asplenium ruprechtii and related taxa (Aspleniaceae). Korean Journal of Plant Taxonomy 45: 362-368.   DOI
20 Lee, C. S., S.-C. Kim, S. H. Yeau and N. S. Lee. 2012. Nuclear and cpDNA sequences demonstrate spontaneous hybridization between Goodyera schlechtendaliana Rchb. f. and G. velutina Maxim. (Orchidaceae) in Jeju Island, Korea. Systematic Botany 37: 356-364.
21 Lee, T. B. 1980. Illustrated Flora of Korea. Hyangmunsa, Seoul, 990 pp. (in Korean)
22 Murakami, N. and B. A. Schaal. 1994. Chloroplast DNA variation and the phylogeny of Asplenium sect. Hymenasplenium (Aspleniaceae) in the New World tropics. Journal of Plant Research 107: 245-251.   DOI
23 Lee, Y. N. 2006. New Flora of Korea. Kyohaksa Publ. Co., Seoul, Vol. 1, 975 pp. (in Korean)
24 Li, C.-X. and S.-G. Lu. 2006. Relationship of Asplenium yunnanense and A. lushanense inferred from the sequence analysis of chloroplast rbcL, trnL-F and rps4-trnS. Acta Phytotaxonomica Sinica 44: 296-303.   DOI
25 Lin, Y. X. and R. Viane. 2012. Aspleniaceae. In Flora of China. Vol. 2. Wu, Z.-Y., P. H. Raven and D.-Y. Hong (eds.), Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, MO. Pp. 267-316.
26 Lovis, J. D. and T. Reichstein. 1985. Asplenium trichomanes subsp. pachyrhachis (Aspleniaceae, Pteridophyta) and a note on the typication of A. trichomanes. Willdenowia 15: 187-201.
27 Lovis, J. D., P. J. Brownsey, A. Sleep and M. G. Shivas. 1972. The origin of Asplenium balearicum. The British Fern Gazette 10: 263-268.
28 Murakami, N., S. Nogami, M. Watanabe and K. Iwatsuki. 1999. Phylogeny of Aspleniaceae inferred from rbcL nucleotide sequences. American Fern Journal 89: 232-243.   DOI
29 Park, M. K. 1975. Illustrated Encyclopedia of Fauna and Flora of Korea. Vol. 16. Pteridophyta. Ministry of Education, Seoul, 549 pp. (in Korean)
30 Perrie, L. R. and P. J. Brownsey. 2005. Insights into the biogeography and polyploid evolution of New Zealand Asplenium from chloroplast DNA sequence data. American Fern Journal 95: 1-21.   DOI
31 Rieseberg, L. H. 1995. The role of hybridization in evolution: old wine in new skins. American Journal of Botany 82: 944-953.   DOI
32 Anderson, E. 1949. Introgressive Hybridization. Wiley, New York, 109 pp.
33 Ching, R.-C. and K. Iwatsuki. 1982. Annotations and corrigenda on the Sino-Japanese pteridophytes (I). The Journal of Japanese Botany 57: 129-132.
34 Arnold, M. L. 1997. Natural Hybridization and Evolution. Oxford University Press, New York, 232 pp.
35 Ceccarelli, M., S. Minelli, F. Maggini and P. G. Cionini. 1995. Genome size variation in Vicia faba. Heredity 74: 180-187.   DOI
36 Chang, Y., J. Li, S. Lu and H. Schneider. 2013. Species diversity and reticulate evolution in the Asplenium normale complex (Aspleniaceae) in China and adjacent areas. Taxon 62: 673-687.   DOI
37 Chung, K.-S., A. L. Hipp and E. H. Roalson. 2012. Chromosome number evolves independently of genome size in a clade with nonlocalized centromeres (Carex: Cyperaceae). Evolution 66: 2708-2722.   DOI
38 Rieseberg, L. H., N. C. Ellstrand and M. Arnold. 1993. What can molecular and morphological markers tell us about plant hybridization? Critical Reviews in Plant Sciences 12: 213-241.   DOI
39 Rumsey, F., S. Russell, H. Schafer and H. Rasbach. 2004. Distribution, ecology and cytology of Asplenium azoricum Lovis, Rasbach & Reichstein (Aspleniaceae, Pteridophyta) and its hybrids. American Fern Journal 94: 113-125.   DOI
40 Schneider, H., S. J. Russell, C. J. Cox, F. Bakker, S. Henderson, F. Rumsey, J. Barrett, M. Gibby and J. C. Vogel. 2004a. Chloroplast phylogeny of Asplenioid ferns based on rbcL and trnL-F spacer sequences (Polypodiidae, Aspleniaceae) and its implications for biogeography. Systematic Botany 29: 260-274.   DOI
41 Smith, A. R. and R. B. Cranfill. 2002. Intrafamilial relationships of the thelypteroid ferns (Thelypteridaceae). American Fern Journal 92: 131-149.   DOI
42 Schneider, H., A. R. Smith, R. Cranfill, T. J. Hildebrand, C. H. Haufler and T. A. Ranker. 2004b. Unraveling the phylogeny of polygrammoid ferns (Polypodiaceae & Grammitidaceae): exploring aspects of the diversification of epiphytic plants. Molecular Phylogenetics and Evolution 31: 1041-1063.   DOI
43 Shepherd, L. D., B. R. Holland and L. R. Perrie. 2008. Conflict amongst chloroplast DNA sequences obscures the phylogeny of a group of Asplenium ferns. Molecular Phylogenetics and Evolution 48: 176-187.   DOI
44 Skog, J. E., J. T. Mickel, R. C. Moran, M. Volovsek and E. A. Zimmer. 2004. Molecular studies of representative species in the fern genus Elaphoglossum (Dryopteridaceae) based on cpDNA sequences rbcL, trnL-F, and rps4-trnS. International Journal of Plant Sciences 165: 1063-1075.   DOI
45 Souza-Chies, T. T., G. Bittar, S. Nadot, L. Carter, E. Besin and B. Lejeune. 1997. Phylogenetic analysis of Iridaceae with parsimony and distance methods using the plastid gene rps4. Plant Systematics and Evolution 204: 109-123.   DOI
46 Suda, J. and P. Travnicek. 2006. Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry: new prospects for plant research. Cytometry 69A: 273-280.   DOI
47 Suda, J., A. Krahulcova, P. Travnicek and F. Krahulec. 2006. Ploidy level versus DNA ploidy level: an appeal for consistent terminology. Taxon 55: 447-450.   DOI
48 Swofford, D. L. 2002. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Version 4.01b10. Sinauer Associates, Sunderland, MA, USA.
49 Wang, Z., K. Wang, F. Zhang and Z. Hou. 2003. A biosystematics study of Asplenium sarelii complex. Acta Boyanica Sinica 45: 1-14.
50 Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin and D. G. Higgins. 1997. The CLUSTAL_X Windows Interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research 25: 4876-4882.   DOI
51 Wei, R., H. Schneider and X.-C. Zhang. 2013. Toward a new circumscription of the twinsorus-fern genus Diplazium (Athyriaceae): a molecular phylogeny with morphological implications and infrageneric taxonomy. Taxon 62: 441-457.   DOI
52 White, T. J., T. Bruns, S. Lee and J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols: A Guide to Methods and Applications. Innis M. A., D. H. Gelfand, J. J. Sninsky and T. J. White (eds.), Academic Press, San Diego, CA. Pp. 315-322.
53 Yan, J., J. Zhang, K. Sun, D. Chang, S. Bai, Y. Shen, L. Huang, J. Zhang, Y. Zhang and Y. Dong. 2016. Ploidy level and DNA content of Erianthus arundinaceus as determined by flow cytometry and the association with biological characteristics. PLoS ONE 11: e0151948.   DOI