Browse > Article
http://dx.doi.org/10.11110/kjpt.2017.47.2.161

Genome size of 15 Lamiaceae taxa in Korea  

Lee, Yoonkyung (Department of Biology, Sungshin Women's University)
Kim, Sangtae (Department of Biology, Sungshin Women's University)
Publication Information
Korean Journal of Plant Taxonomy / v.47, no.2, 2017 , pp. 161-169 More about this Journal
Abstract
The genome size is one of the basic characters of an organism, and it is widely applied in various fields of biology, such as systematics, breeding biology, population biology, and evolutionary biology. This factor was recently highlighted in genome studies because choosing a representative of a plant group having the smallest genome size is important for the efficiency of a genome project. For the estimation of the genome size, flow cytometry has recently been highlighted because it is a convenient, fast, and reliable method. In this study, we report the genome sizes of 15 taxa of Lamiaceae from nine genera distributed in Korea using flow cytometry. Data pertaining to the genome size for all of our species have not been reported thus far, and the data from Agastache, Clinopodium, Elsholtzia, and Isodon are the first reported for each genus. The genome sizes of 15 genera and 39 species were reported to the Plant DNA C-values Database (http://data.kew.org/cvalues/). Scutellaria indica L. has a genome size of 0.37 pg (1C). This is the fourth smallest value among the 98 Lamiaceae taxa in the Angiosperm DNA C-value Database, indicating that this taxon can be used as a reference species in the genome studies in Lamiaceae as a native Korean species. The largest genome size observed in this study is in Phlomis umbrosa Turcz. (1C=2.60 pg), representing the possible polyploidy origin of this species in the family.
Keywords
genome size; DNA contents; C-value; flow cytometry; Lamiaceae;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Amborella Genome Project. 2013. The Amborella genome and the evolution of flowering plants. Science 342: 1241089.   DOI
2 Angiosperm Phylogeny Group. 2016. An update of the angiosperm phylogeny group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 181: 1-20.   DOI
3 Bai, C., W. S. Alverson, A. Follansbee and D. M. Waller. 2012. New reports of nuclear DNA content for 407 vascular plant taxa from the United States. Annals of botany 110: 1623-1629.   DOI
4 Bainard, J. D., B. C. Husband, S. J. Baldwin, A. J. Fazekas, T. R. Gregory, S. G. Newmaster and P. Kron. 2011. The effects of rapid desiccation on estimates of plant genome size. Chromosome Research 19: 825-842.   DOI
5 Barow, M. and A. Meister. 2003. Endopolyploidy in seed plants is differently correlated to systematics, organ, life strategy and genome size. Plant Cell and Environment 26: 571-584.   DOI
6 Bennett, M. D. 1972. Nuclear DNA content and minimum generation time in herbaceous plants. Proceedings of the Royal Society of London Series B Biological Sciences 181: 109-135.   DOI
7 Bennett, M. D., P. Bhandol and I. J. Leitch. 2000. Nuclear DNA amounts in angiosperms and their modern uses: 807 new estimates. Annals of Botany 86: 859-909.   DOI
8 Bennett, M. D. and I. J. Leitch. 2005. Plant DNA C-values Database (Release 4.0). Royal Botanic Gardens, Kew.
9 Bennett, M. D. and I. J. Leitch. 2010. Plant DNA C-values Database (Release 5.0). Royal Botanic Gardens, Kew.
10 Bennett, M. D. and I. J. Leitch. 2012. Angiosperm DNA C-values Database (Release 8.0). Royal Botanic Gardens, Kew.
11 Ceccarelli, M., L. Morosi and P. G. Cionini. 1998. Chromocenter association in plant cell nuclei: determinants, functional significance, and evolutionary implications. Genome 41: 96-103.   DOI
12 Kim, S., M. Park, S.,-I., Yeom, Y.-M. Kim, J. M. Lee, H.-A. Lee, E. Seo, J. Choi, K. Cheong, K.-T. Kim, K. Jung, G.-W. Lee, S.-K. Oh, C. Bae, S.-B. Kim, H.-Y. Lee, S.-Y. Kim, M.-S. Kim, B.-C. Kang, Y. D. Jo, H.-B. Yang, H.-J. Jeong, W.-H. Kang, J.-K. Kwon, C. Shin, J. Y. Lim, J. H. Park, J. H. Huh, J.-S. Kim, B.-D. Kim, O. Cohen, I. Paran, M. C. Suh, S. B. Lee, Y.-K. Kim, Y. Shin, S.-J. Noh, J. Park, Y. S. Seo, S.-Y. Kwon, H. A Kim, J. M. Park, H.-J. Kim, S.-B. Choi, P. W. Bosland, G. Reeves, S.-H. Jo, B.-W. Lee, H.-T. Cho, H.-S. Choi, M.-S. Lee, Y. Yu, Y. D. Choi, B.-S. Park, A. van Deynze, H. Ashrafi, T. Hill, W. T. Kim, H.-S. Pai, H. K. Ahn, I. Yeam, J. J. Giovannoni, J. K. C. Rose, I. Sorensen, S.-J. Lee, R. W. Kim, I.-Y. Choi, B.-S. Choi, J.-S. Lim, Y.-H. Lee and D. Cho. 2014. Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nature Genetics 46: 270-278.   DOI
13 Dolezel, J., J. Bartos, H. Voglmayr and J. Greilhuber. 2003. Nuclear DNA content and genome size of trout and human. Cytometry A 51: 127-128.
14 Dolezel, J., J. Greilhuber and J. Suda. 2007. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2: 2233-2244.   DOI
15 Galbraith, D. W., K. R. Harkins, J. M. Maddox, N. M. Ayres, D. P. Sharma and E. Firoozabady. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049-1051.   DOI
16 Greilhuber, J., T. Borsch, K. Muller, A. Worberg, S. Porembski and W. Barthlott. 2006. Smallest angiosperm genomes found in Lentibulariaceae, with chromosomes of bacterial size. Plant Biology 8: 770-777.   DOI
17 Hanson, L., I. J. Leitch and M. D. Bennett. 2002. Unpublished data from the Jodrell Laboratory, Royal Botanic Gardens, Kew.
18 Kubesova, M., L. Moravcova, J. Suda, V. Jarosik and P. Pysek. 2010. Naturalized plants have smaller genomes than their noninvading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 82: 81-96.
19 Mahdavi, S. and G. Karimzadeh. 2010. Karyological and nuclear DNA content variation in some Iranian endemic Thymus species (Lamiaceae). Journal of Agricultural Science and Technology 12: 447-458.
20 Leitch, I. J. and M. D. Bennett. 2007. Genome size and its uses: the impact of flow cytometry. In Flow Cytometry with Plant Cells: Analysis of Genes, Chromosones, and Genomes. Dolezel, J., J. Greilhuber and J. Suda (eds.), Wiley-VCH, Weinheim. Pp. 153-176.
21 Maksimovic, M., D. Vidic, M. Milos, M. E. Solic, S. Abadzic and S. Siljak-Yakovlev. 2007. Effect of the environmental conditions on essential oil profile in two Dinaric Salvia species: S. brachyodon Vandas and S. officinalis L. Biochemical Systematics and Ecology 35: 473-478.   DOI
22 Marie D. and S. C. Brown. 1993. A cytometric exercise in plant DNA histograms, with 2C values for 70 species. Biology of the Cell 78: 41-51.   DOI
23 Mirsky, A. E. and H. Ris. 1951. The desoxyribonucleic acid content of animal cells and its evolutionary significance. The Journal of General Physiology 34: 451-462.   DOI
24 Mowforth, M. A. 1985. Variation in nuclear DNA amounts in flowering plants: An ecological anlaysis (Doctoral dissertation). University of Sheffield, Sheffield.
25 Ohri, D. and A. Kumar. 1986. Nuclear DNA amounts in some tropical hardwoods. Caryologia 39: 303-307.   DOI
26 Ohri, D., A. Bhargava and A. Chatterjee. 2004. Nuclear DNA amounts in 112 species of tropical hardwoods: New estimates. Plant Biology 6: 555-561.   DOI
27 Olszewska, M. J. and R. Osiecka. 1983. The relationship between 2 C DNA content, life cycle type, systematic position and the dynamics of DNA endoreplication in parenchyma nuclei during growth and differentiation of roots in some dicotyledonous herbaceous species. Biochemie und Physiologie der Pflanzen 178: 581-599.   DOI
28 Schmidt-Lebuhn, A. N., J. Fuchs and M. Kessler. 2008. Flow cytometric measurements do not reveal different ploidy levels in Minthostachys (Lamiaceae). Plant Systematics and Evolution 271: 123-128.   DOI
29 Pellicer, J., M. F. Fay and I. J. Leitch. 2010. The largest eukaryotic genome of them all? Botanical Journal of the Linnean Society 164: 10-15.   DOI
30 Rosenbaumova, R., I. Plackova and J. Suda. 2004. Variation in Lamium subg. Galeobdolon (Lamiaceae): Insights from ploidy levels, morphology and isozymes. Plant Systematics and Evolution 244: 219-244.   DOI
31 Suda, J., T. Kyncl and V. Jarolimova. 2005. Genome size variation in Macaronesian angiosperms: Forty percent of the Canarian endemic flora completed. Plant Systematics and Evolution 252: 215-238.   DOI
32 Siljak-Yakovlev, S., F. Pustahija, E. M. Solic, F. Bogunic, E. Muratovic, N. Basic, O. Catrice and S. C. Brown. 2010. Towards a genome size and chromosome number database of Balkan flora: C-values in 343 taxa with novel values for 242. Advanced Science Letters 3: 190-213.   DOI
33 Stevens, P. F. 2001. Angiosperm Phylogeny Website (version 12). Retrieved Jul. 2012, available from http://www.mobot.org/MOBOT/research/APweb/.
34 Suda, J., T. Kyncl and R. Freiova. 2003. Nuclear DNA amounts in Macaronesian angiosperms. Annals of Botany 92: 153-164.   DOI
35 Suh, Y., S. Hong and S. Park. 2007. Lamiaceae. In The Genera of Vascular Plants of Korea. Park, C.-W. (ed.). Academy Publ. Co., Seoul. Pp. 815-841. (in Korean)
36 Temsch, E. M., W. Temsch, L. Ehrendorfer-Schratt and J. Greilhuber. 2010. Heavy metal pollution, selection, and genome size: The species of the Zerjav study revisited with flow cytometry. Journal of Botany 2010: 596542.
37 Thomas C. A. Jr. 1971. The genetic organization of chromosomes. Annual Review of Genetics 5: 237-256.   DOI
38 Zonneveld, B. J. M., I. J. Leitch and M. D. Bennett. 2005. First nuclear DNA amounts in more than 300 angiosperms. Annals of Botany 96: 229-244.   DOI
39 Vesely, P., P. Bures, P. Smarda and T. Pavlicek. 2012. Genome size and DNA base composition of geophytes: The mirror of phenology and ecology? Annals of Botany 109: 65-75.   DOI