Browse > Article
http://dx.doi.org/10.11110/kjpt.2016.46.3.273

DNA barcoding of Schisandraceae in Korea  

Youm, Jung Won (Department of Biology, Daejeon University)
Han, Sang-Wook (Department of Biology, Daejeon University)
Seo, Seon Won (Department of Biology, Daejeon University)
Lim, Chae Un (Plant Resources Division, National Institute of Biological Resources)
Oh, Sang-Hun (Department of Biology, Daejeon University)
Publication Information
Korean Journal of Plant Taxonomy / v.46, no.3, 2016 , pp. 273-282 More about this Journal
Abstract
The establishment of a DNA barcode database at the regional scale and assessments of the utility of DNA barcodes are crucial for conservation biology and for the sustainable utilization of biological resources. Schisandraceae is a small family consisting of ca. 45 species. It contains many economically important species, such as Schisandra chinensis, which is widely used as a source in tonic beverages and in oriental medicine. In Korea, three species, S. chinensis, S. repanda, and Kadsura japonica, are distributed. We evaluated the level of variation of the DNA sequences of rbcL, matK, and the ITS regions from 13 accessions representing the distributional range of the three species. The three DNA barcode regions were easily amplified and sequenced. The minimum values of the interspecific genetic distances among S. chinensis, S. repanda, and K. japonica either separately or in combination are 4- to 23-fold higher than the maximum value of the intraspecific distance, showing that there is a clear DNA barcoding gap in the regions for Korean Schisandraceae. Phylogenetic analyses of the three DNA barcode regions, separately and simultaneously, indicate that all of the DNA barcode regions are useful for identifying a species of Schisandraceae in Korea. The distinctiveness of the three species of Schisandraceae was also supported at the species level when Chinese and Japanese populations were added. The results of this study indicate that three concatenated regions constitute the best option for DNA barcoding in Schisandraceae in Korea.
Keywords
DNA barcoding; medicinal plants; Schisandraceae; species identification;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kim, H. M., S.-H. Oh, G, S. Bhandari, C.-S. Kim and C.-W. Park. 2014. DNA barcoding of Orchidaceae in Korea. Molecular Ecology Resources 14: 499-507.   DOI
2 Kress, W. J., K. J. Wurdack, E. A. Zimmer, L. A. Weigt and D. H. Janzen. 2005. Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America 102: 8369-8374.   DOI
3 Kress, W. J. and D. L. Erickson. 2007. A two-locus global DNA barcode for land plants: tThe coding rbcL gene complements the non-coding trnH-psbA spacer region. PLoS ONE 2: e508.   DOI
4 Lahaye, R., M. van der Bank, D. Bogarin, J. Warner, F. Pupulin, G. Gigot, O. Maurin, S. Duthoit, T. G. Barraclough and V. Savolainen. 2008. DNA barcoding the floras of biodiversity hotspots. Proceedings of the National Academy of Sciences of the United States of America 105: 2923-2928.   DOI
5 Lee, Y. M., B. C. Moon, Y. Ji, H. S. Seo and H. K. Kim. 2013. Development of RAPD-derived SCAR markers and multiplex-PCR for authentication of the Schisandrae Fructus. Korean Journal of Medicinal Crop Science 21: 165-173. (in Korean)   DOI
6 Liu, Z., G. Hao, Y.-B. Luo, L. B. Thien, S. W. Rosso, A.-M. Lu and Z.-D. Chen. 2006. Phylogeny and androecial evolution in Schisandraceae, inferred from sequences of nuclear ribosomal DNA ITS and chloroplast DNA trnL-F regions. International Journal of Plant Sciences 167: 539-550.   DOI
7 Ohwi, J. 1965. Flora of Japan. Smithsonian Institution, Washington, DC, 1067 pp.
8 Panossian, A. and G. Wikman. 2008. Pharmacology of Schisandra chinensis Bail.: An overview of Russian research and uses in medicine. Journal of Ethnopharmacology 118: 183-212.   DOI
9 Potter, D., S. M. Still, T. Grebenc, D. Ballian, G. Bozic, J. Franjiae and H. Kraigher. 2007. Phylogenetic relationships in tribe Spiraeeae (Rosaceae) inferred from nucleotide sequence data. Plant Systematics and Evolution 266: 105-118.   DOI
10 CBOL Plant Working Group. 2009. A DNA barcode for land plants. Proceedings of the National Academy of Sciences of the United States of America 106: 12794-12797.   DOI
11 Cuenoud, P., V. Savolainen, L. W. Chatrou, M. Powell, R. J. Grayer and M. W. Chase. 2002. Molecular phylogenetics of Caryophyllales based on nuclear 18S rDNA and plastid rbcL, atpB, and matK DNA sequences. American Journal of Botany 89: 132-144.   DOI
12 Daniel, T. F., L. A. McDade, M. Manktelow and C. A. Kiel. 2008. The "Tetramerium lineage" (Acanthaceae: Acanthoideae: Justicieae): Delimitation and intra-lineage relationships based on cp and nrITS sequence data. Systematic Botany 33: 416-436.   DOI
13 Edgar, R. C. 2004. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797.   DOI
14 Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 783-791.   DOI
15 Hao, G., M.-L. Chye and R. M. K. Saunders. 2001. A phylogenetic analysis of the Schisandraceae based on morphology and nuclear ribosomal ITS sequences. Botanical Journal of the Linnean Society 135: 401-411.   DOI
16 Hebert, P. D. N., A. Cywinska, S. L. Ball and J. R. deWaard. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Sciences 270: 313-321.   DOI
17 Saunders, R. M. K. 1998. Monograph of Kadsura (Schisandraceae). Systematic Botany Monographs. Vol. 54. American Society of Plant Taxonomists, Ann Arbor, MI, 106 pp.
18 Hebert, P. D. N., E. H. Penton, J. M. Burns, D. H. Janzen and W. Hallwachs. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 101: 14812-14817.   DOI
19 Jang, M.-K., J. S. Nam, J. H. Kim, Y.-R. Yun, C. W. Han, B. J. Kim, H.-S. Jeong, K.-T. Ha and M. H. Jung. 2016. Schisandra chinensis extract ameliorates nonalcoholic fatty liver via inhibition of endoplasmic reticulum stress. Journal of Ethnopharmacology 185: 96-104.   DOI
20 Sang, T., D. Crawford and T. Stuessy. 1997. Chloroplast DNA phylogeny, reticulate evolution, and biogeography of Paeonia (Paeoniaceae). American Journal of Botany 84: 1120-1136.   DOI
21 Saunders, R. M. K. 2000. Monograph of Schisandra (Schisandraceae). Systematic Botany Monographs. Vol. 58. American Society of Plant Taxonomists, Ann Arbor, MI, 146 pp.
22 Soltis, P. S., D. E. Soltis and C. J. Smiley. 1992. An rbcL sequence from a Miocene Taxodium (bald cypress). Proceedings of the National Academy of Sciences of the United States of America 89: 449-451.   DOI
23 Suh, Y. 2007. Schisandraceae Blume. In The Genera of Vascular Plants of Korea. Park, C.-W. (ed.), Academy Publishing Co., Seoul. Pp. 157-158.
24 Swofford, D. L. 2002. PAUP*: Phylogenetic analysis using parsimony (* and other methods), version 4.0. Sinauer Associates, Sunderland, MA.
25 Tripathi, A. M., A. Tyagi, A. Kumar, A. Singh, S. Singh, L. B. Chaudhary and S. Roy. 2013. The Internal Transcribed Spacer (ITS) region and trnH-psbA are suitable candidate loci for DNA barcoding of tropical tree species of India. PLoS ONE 8: e57934.   DOI
26 Zhang, J., M. Chen, X. Dong, R. Lin, J. Fan and Z. Chen. 2015. Evaluation of four commonly used DNA barcoding loci for Chinese medicinal plants of the family Schisandraceae. PLoS ONE 10: e0125574.   DOI
27 Walker, E. H. 1976. Flora of Okinawa and the Southern Ryukyu Islands. Smithsonian Institution Press, Washington, DC, 1159 pp.
28 Xiang, X.-G., H. Hu, W. Wang and X.-H. Jin. 2011. DNA barcoding of the recently evolved genus Holcoglossum (Orchidaceae: Aeridinae): A test of DNA barcode candidates. Molecular Ecology Resources 11: 1012-1021.   DOI