Browse > Article
http://dx.doi.org/10.11110/kjpt.2014.44.2.91

Leaf anatomy of Pinus thunbergii Parl. (Pinaceae) collected from different regions of Korea  

Ghimire, Balkrishna (Department of Applied Plant Science and Oriental Bio-herb Research Institute, Kangwon National University)
Kim, Muyeol (Department of Biological Science, Chonbuk National University)
Lee, Jeong-Ho (Korea Forest Seed & Variety Center, Korea Forest Service)
Heo, Kweon (Department of Applied Plant Science and Oriental Bio-herb Research Institute, Kangwon National University)
Publication Information
Korean Journal of Plant Taxonomy / v.44, no.2, 2014 , pp. 91-99 More about this Journal
Abstract
Leaf anatomical study of Pinus thunbergii collected from 12 different coastal regions of Korea was conducted to understand the adaptive variation on leaf traits. Basic anatomical features are typical pine needle type with fibrous epidermis, 2-3 layered hypodermis, sunken stomata, monomorphic mesophyll, and well-represented bundle sheath. The bundle sheath surrounds a couple of vascular bundle separated by parenchyma bands. On the basis of their position, the resin ducts are of three types; external, medial and internal of the bundle sheath. The total number of resin ducts in all samples varies from 4 to 12. The stomata were found on stomatal bands throughout the leaf surface. Important dissimilarities observed on P. thunburgii leaf are the number and position of resin ducts and the number of stomata rows in leaf surface.
Keywords
Pinus thunbergii; leaf anatomy; resin ducts; stomata;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sheue, C. R., Y. P. Yank, L. L. Kuo-Huang. 2003. Altitudinal variation of resin ducts in Pinus taiwanensis Hayata (Pinaceae) needles. Botanical Bulletin of Academic Sinica 44: 305-313.
2 Skuterud, L., N. I. Goltsova, R. Næumann, T. Silleland and T. Lindmo. 1994. Histological changes in Pinus sylvestris L. in the proximal-zone around the Chernobyl power plant. Science Total Environment 157: 387-397.   DOI
3 Spjut, R. W. 2007. A phytogeographical analysis of Taxus (Taxaceae) based on leaf anatomical characters. Journal of Botanical Research Institute of Texas 1: 291-332.
4 Tiwari, S. P., P. Kumar, D. Yadav and D. K. Chauhan. 2013. Comparative morphological, epidermal, and anatomical studies of Pinus roxburghii needles at different altitudes in the North- West Indian Himalayas. Turkish Journal of Botany 37: 65-73.
5 Taylor, T. N., E. L. Taylor and M. Krings. 2009. Paleobotany, The Biology and Evolution of Fossil Plants. Academic Press, Burlington-London.
6 Telewski, F. W., R. T. Swanson, B. R. Strain and J. M. Burns. 1999. Wood properties and ring width response to long-term atmospheric $CO_2$ enrichment in field-grown loblolly pine (Pinus taeda L.). Plant Cell Environment 22: 213-219.   DOI   ScienceOn
7 Telewski, F. W., A. H. Wakefield and M. J. Jaffe. 1983. Computerassisted image analysis of tissues of ethrel-treated Pinus taeda seedlings. Plant Physiology 72: 177-181.   DOI   ScienceOn
8 Yang, J.E., W. Y. Lee, Y. S. Ok and J. Skousen. 2009. Soil nutrients bioavailability and nutrient content of pine tree (Pinus thunbergii) in area impacted by acid deposition in Korea. Environmental monitoring and Assessment 157: 43-50.   DOI   ScienceOn
9 Zang, D., C. R. Li, J. W. Xu, L. C. Lui, Z. Zhou, X. L. Wang and C. Huang. 2011. Branching pattern characteristics and antiwind breakage ability of Pinus thunbergii in sandy coast. Chinese Journal of Plant Ecology 35: 926-936. (In Chinese)   DOI
10 Kim, K. D. 2005. Invasive plants on distributed Korean sand dunes. Estuarine, Coastal and Shelf Science 62: 353-364.   DOI   ScienceOn
11 Hengxiao, G., J. D. McMillin, M. R. Wagner, J. Zhou, Z. Zhou, X. Xu. 1999. Altitudinal variation in foliar chemistry and anatomy of Yunnan pine, Pinus yunnanensis, and pine sawfly (Hym. Diprionidae) performance. J. Appl. Entomol. 123: 465-471.   DOI
12 Hetherington, A. M. and F. I. Woodward. 2003. The role of stomata in sensing and driving environmental change. Nature 424: 901-908.   DOI   ScienceOn
13 Jokela, A., T. Sarjala and S. Huttunen. 1998. The structure and hardening status of Scots pine needle at different potassium availability levels. Trees-Structure and Function 12: 490-498.   DOI
14 Kim, H., S. H. Jeong, D. G. Kim, H. J. Kim, S. M. Choi, M. B. Lee, S. W. Bae, J. H. Lim and S. H. Lee. 2013. Developing a site index model considering soil characteristics for Pinus thunbergii stands grown on the coast of Korea. Korean Journal of Applied Biological Chemistry 56: 173-180.   과학기술학회마을   DOI
15 Kormutak, A., R. Matusova, A. Szmidt and D. Lindgren. 1993. Karyological, anatomical and restriction fragment length polymorphism characteristics of the interspecific hybrid Pinus banksiana ${\times}$ Pinus contorta. Biologia (Bratislava) 48: 95-100.
16 Ministry of Environment .2001. Distribution of coastal dunes and their actual condition in Korea. pp. 229. (In Korean)
17 Obase, K., J. Y. Cha, J. K. Lee, S. Y. Lee, J. H. Lee and K. W. Chun. 2009. Ectomycorrhizal fungal communities associated with Pinus thunbergii in the eastern coastal pine forests of Korea. Mycorrhiza 20: 39-49.   DOI   ScienceOn
18 Schoettle, A. W. and S. G. Rochelle. 2000. Morphological variation of Pinus flexilis (Pinaceae), a bird-dispersed pine, across a range of elevations. American Journal of Botany 87: 1797-1806.   DOI
19 Pritchard, S., C. Peterson, G. B. Runion, S. Prior and H. Rogers. 1997. Atmospheric CO2 concentration, N availability, and water status affect patterns of ergastic substance deposition in longleaf pine (Pinus palustris Mill.) foliage. Trees 11: 494-503.
20 Richardson, D. M 1998. Ecology and Biogeography of Pinus. Cambridge University Press.
21 Abrams, M. D. and M. E. Kubiske. 1990. Leaf structural characteristics of 31 hardwood and conifer tree species in central Wisconsin: Influence of light regime and shade-tolerance rank. Forest Ecology and Management 31: 245-253.   DOI   ScienceOn
22 Boratynska, K. and M. A. Bobowicz. 2001. Pinus uncinata Ramond taxonomy based on needle characters. Plant Systematic and Evolution 277: 183-194.
23 Choi, K. H., Y. M. Kim and P. M. Jung. 2013. Adverse effect of planting pine on coastal dunes, Korea. In: Conley DC, Masselink G, Russell PE, O'Hare TJ (eds) Proceedings 12th International Coastal Symposium (Plymouth, England), Journal of Coastal Research 65: 909-914.   DOI
24 Dorken, V. M. and T. Stutzel. 2012. Morphology, anatomy and vasculature of leaves in Pinus (Pinaceae) and its evolutionary meaning. Flora 207: 57-62.   DOI   ScienceOn
25 Eckenwalder, J. E. 2009. Conifers of the World. Timber Press, Portland.
26 Fahn, A. and J. Benayoun. 1976. Ultrastructure of resin ducts in Pinus halepensis development, possible sites of resin synthesis, and mode of its elimination from the protoplast. Annals of Botany 40: 857-863.   DOI
27 Han, G. X., P. L. Mao, S. J. Lui, G. M. Wang, Z. D. Zang and Q. Z. Xue. 2009. Effects of sea water salinity and mother tree size on the seed germination and seedling early growth of Pinus thunbergii coastal protection forest. Chinese J. Ecology 28: 2171-2176. (In Chinese)
28 Fu, L., N. Li, R. R. Mill. 1999. Pinaceae. In:Wu ZY, Raven PH (eds) Flora of China, Cycadaceae through Fagaceae. Science Press, Beijing and Missouri Botanical Garden Press, St. Louis, 4: 11-52.
29 Gambles, R. L. and R. E. Dengler. 1982. The anatomy of the leaf of red pine, Pinus resinosa L. nonvascular tissues. Canadian Journal of Botany 60: 2788-2803.   DOI
30 Garcia-Alvarez, S., I. Garcia-Amorena, J. M. Rubiales and C. Morla. 2009. The value of leaf cuticle characteristics in the identification and classification of Iberian Mediterranean members of the genus Pinus. Botanical Journal of Linnean Society 161: 436-448.   DOI   ScienceOn
31 Helmers, A. E. 1943. Ecological anatomy of ponderosa pine needles. The American Midland Naturalist 29: 55-71.   DOI   ScienceOn
32 Murai, H., M. Ishikawa, J. Endo, R. Tadaki. 1992. The coastal forest in Japan. Soft Science Inc., Tokyo. (In Japanese)