Browse > Article
http://dx.doi.org/10.11110/kjpt.2013.43.4.245

Genetic diversity assessment of wild populations of Paeonia lactiflora Pall. in Gyeongju National Park, Korea  

Won, Hyosig (Department of Biological Science, Daegu University)
Lim, Chang Kun (Department of Biological Science, Daegu University)
Choi, Sun Ah (Department of Biological Science, Daegu University)
Kim, Mi-Jin (Juwangsan National Park Service)
Publication Information
Korean Journal of Plant Taxonomy / v.43, no.4, 2013 , pp. 245-251 More about this Journal
Abstract
Paeonia lactiflora is a valuable natural resource for horticulture and traditional Chinese medicine. To propose conservation strategy and future utility of the wild Paeonia lactiflora populations recently found around the Gyeongju National Park, genetic diversity analysis using microsatellite markers were performed. Three populations in and near the Gyeongju N.P. and one population from Jilin, China were analyzed for five microsatellite markers, producing 61 alleles with mean observed heterozygosity($H_o$) of 0.452. $F_{ST}$ value (0.11642) suggested moderate level of genetic differentiation among the populations, and hierarchical AMOVA suggested most of the genetic variation resides within/among the individuals rather than among-population. While AMOVA with $F_{ST}$ suggested lack of genetic differentiation between the regional (Korean vs. Chinese) populations, AMOVA with $R_{ST}$, which incorporates the allele sizes, suggested considerable differentiation between them, but without significant statistical support. STRUCTURE analysis also suggested segregation of regional populations with presence of gene flow among the three Gyeongju N.P. populations. Considering small population size and scarcity of mature individuals, further protection and long-term monitoring are needed.
Keywords
Paeonia lactiflora; Gyeongju National Park; Genetic diversity; microsatellite marker; conservation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Excoffier, L., G. Laval and S. Schneider. 2005. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics. 1: 47-50.
2 Glaubitz, J. C. 2004. Convert: A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Molecular Ecololgy Notes 4: 309-310.   DOI   ScienceOn
3 Goudet J., 1995. FSTAT (Version 1.2): A computer program to calculate F-statistics. Journal of Heredity 86: 485-486.   DOI
4 Guo, S. W. and E. A. Thompson. 1992. Performing the exact test of Hardy-Weinberg proportion for multiple alleles. Biometrics 48: 361-372.   DOI   ScienceOn
5 Hong, D. Y. 2010. Peonies of the World: Taxonomy and Phytogeography. Kew Publishing, London.
6 Hong, D. Y. 2011. Peonies of the World: Polymorphism and Diversity. Kew Publishing, London.
7 Hong, D. Y., K. Y. Pan and N. J. Turland. 2001. Paeoniaceae. In Flora of China. Vol. 6. Wu, Z. Y. and P. H. Raven (eds.), Science Press and Missouri Botanic Garden Press. Pp. 127-132.
8 Hong, Y. and Q. Liu. 2006. A study on pollination biology of Paeonia lactiflora Pall. Guihaia 26: 120-124.
9 Lee, Y.N. 2006. New Flora of Korea. Kyohaksa Publishing Co., Ltd. Seoul, Korea. (in Korean)
10 Li, K., B.Q. Zheng, Y. Wang and X. Guo. 2013. Study on pollination biology of Paeonia delavayi (Paeoniaceae). Acta Horticulturae 977: 175-181.
11 Li, L., F. Cheng and Q. Zhang. 2011. Microsatellite markers for the Chinese herbaceous peony Paeonia lactiflora (Paeoniaceae). American Journal of Botany 98: e1-e3.   DOI   ScienceOn
12 Pritchard, J.K., M. Stephens and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945-959.
13 Raymond, M. and F. Rousset. 1995. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. Journal of Heredity 86: 248-249.   DOI
14 Schuelke, M. 2000. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnology 18: 233-234.   DOI   ScienceOn
15 Slatkin, M., 1995. A measure of population subdivision based on microsatellite allele frequencies. Genetics 139: 457-462.
16 Sun, J., J. Yuan, B. Wang, J. Pan and D. Zhang. 2011. Development and characterization of 10 microsatellite loci in Paeonia lactiflora (Paeoniaceae). American Journal of Botany 98: e242-e243.   DOI
17 The Angiosperm Phylogeny Group. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG III. Botanical Journal of Linnean Society 161: 105-121.   DOI   ScienceOn
18 Van Oosterhout, C., W.F. Hutchinson, D.P.M. Willis and P. Shipley. 2004. Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4: 535-538.   DOI   ScienceOn
19 Weir, B.S. and C.C. Cockerham. 1984. Estimating F-statistics for the analysis of population structure. Evolution 38: 1358-1370.   DOI   ScienceOn
20 Wright, S. 1978. Evolution and the Genetics of Populations. Vol. 4. Variability within and among Natural Populations. University of Chicago Press, Chicago.
21 Yuan, J.-H., F-Y. Cheng and S.-L. Zhou. 2012. Genetic structure of the tree peony (Paeonia rockii) and the Qinling Mountains as a geographic barrier driving the fragmentation of a large population. PLoS One 7: e34955.   DOI
22 Zhou, S.L., D.Y. Hong and K.Y. Pan. 1999. Pollination biology of Paeonia jishanensis T. Hong & W.Z. Zhao (Paeoniaceae), with special emphasis on pollen and stigma biology. Botanical Journal of Linnean Society 130: 43-52.   DOI