Browse > Article
http://dx.doi.org/10.3340/jkns.2021.0054

Cell Lineage, Self-Renewal, and Epithelial-to-Mesenchymal Transition during Secondary Neurulation  

Kawachi, Teruaki (Department of Zoology, Graduate School of Science, Kyoto University)
Tadokoro, Ryosuke (Department of Zoology, Graduate School of Science, Kyoto University)
Takahashi, Yoshiko (Department of Zoology, Graduate School of Science, Kyoto University)
Publication Information
Journal of Korean Neurosurgical Society / v.64, no.3, 2021 , pp. 367-373 More about this Journal
Abstract
Secondary neurulation (SN) is a critical process to form the neural tube in the posterior region of the body including the tail. SN is distinct from the anteriorly occurring primary neurulation (PN); whereas the PN proceeds by folding an epithelial neural plate, SN precursors arise from a specified epiblast by epithelial-to-mesenchymal transition (EMT), and undergo self-renewal in the tail bud. They finally differentiate into the neural tube through mesenchymal-to-epithelial transition (MET). We here overview recent progresses in the studies of SN with a particular focus on the regulation of cell lineage, self-renewal, and EMT/MET. Cellular mechanisms underlying SN help to understand the functional diversity of the tail in vertebrates.
Keywords
Cell lineage; Cell self renewal; Epithelial-mesenchymal transition; Chickens;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kawachi T, Shimokita E, Kudo R, Tadokoro R, Takahashi Y : Neural-fated self-renewing cells regulated by Sox2 during secondary neurulation in chicken tail bud. Dev Biol 461 : 160-171, 2020   DOI
2 Nievelstein RA, Hartwig NG, Vermeij-Keers C, Valk J : Embryonic development of the mammalian caudal neural tube. Teratology 48 : 21-31, 1993   DOI
3 Nikolopoulou E, Galea GL, Rolo A, Greene ND, Copp AJ : Neural tube closure: cellular, molecular and biomechanical mechanisms. Development 144 : 552-566, 2017   DOI
4 Olivera-Martinez I, Harada H, Halley PA, Storey KG : Loss of FGF-dependent mesoderm identity and rise of endogenous retinoid signalling determine cessation of body axis elongation. PLoS Biol 10 : e1001415, 2012   DOI
5 Pasteels J : Etudes sur la gastrulation des vertebres meroblastiques. III. Oiseaux. IV Conclusions generales. Arch Biol 48 : 381-488, 1937
6 Romanos M, Allio G, Combres L, Medevielle F, Escalas N, Soula C, et al. : Cell-to-cell heterogeneity in Sox2 and Brachyury expression ratios guides progenitor destiny by controlling their motility. bioRxiv, 2020 [Epub ahead of print]
7 Saitsu H, Yamada S, Uwabe C, Ishibashi M, Shiota K : Development of the posterior neural tube in human embryos. Anat Embryol (Berl) 209 : 107-117, 2004   DOI
8 Shaker MR, Lee JH, Kim KH, Kim JV, Kim JY, Lee JY, et al. : Spatiotemporal contribution of neuromesodermal progenitor-derived neural cells in the elongation of developing mouse spinal cord. bioRxiv, 2020 [Epub ahead of print]
9 Shimokita E, Takahashi Y : Secondary neurulation: fate-mapping and gene manipulation of the neural tube in tail bud. Dev Growth Differ 53 : 401-410, 2011   DOI
10 Criley BB : Analysis of embryonic sources and mechanims of development of posterior levels of chick neural tubes. J Morphol 128 : 465-501, 1969   DOI
11 Takemoto T, Uchikawa M, Yoshida M, Bell DM, Lovell-Badge R, Papaioannou VE, et al. : Tbx6-dependent Sox2 regulation determines neural or mesodermal fate in axial stem cells. Nature 470 : 394-398, 2011   DOI
12 Gouti M, Tsakiridis A, Wymeersch FJ, Huang Y, Kleinjung J, Wilson V, et al. : In vitro generation of neuromesodermal progenitors reveals distinct roles for wnt signalling in the specification of spinal cord and paraxial mesoderm identity. PLoS Biol 12 : e1001937, 2014   DOI
13 Dady A, Havis E, Escriou V, Catala M, Duband JL : Junctional neurulation: a unique developmental program shaping a discrete region of the spinal cord highly susceptible to neural tube defects. J Neurosci 34 : 13208-13221, 2014   DOI
14 Garcia-Martinez V, Darnell DK, Lopez-Sanchez C, Sosic D, Olson EN, Schoenwolf GC : State of commitment of prospective neural plate and prospective mesoderm in late gastrula/early neurula stages of avian embryos. Dev Biol 181 : 102-115, 1997   DOI
15 Gouti M, Delile J, Stamataki D, Wymeersch FJ, Huang Y, Kleinjung J, et al. : A gene regulatory network balances neural and mesoderm specification during vertebrate trunk development. Dev Cell 41 : 243-261.e7, 2017   DOI
16 Griffith CM, Wiley MJ, Sanders EJ : The vertebrate tail bud: three germ layers from one tissue. Anat Embryol (Berl) 185 : 101-113, 1992   DOI
17 Guillot C, Michaut A, Rabe B, Pourquie O : Dynamics of primitive streak regression controls the fate of neuro-mesodermal progenitors in the chicken embryo. bioRxiv, 2020 [Epub ahead of print]
18 Holmdahl DE : Die Morphogenese des Vertebratorganismus vom formalen und experimentellen Gesichtspunkt. W Roux' Archiv f Entwicklungsmechanik 139 : 191-226, 1939   DOI
19 Iimura T, Pourquie O : Collinear activation of Hoxb genes during gastrulation is linked to mesoderm cell ingression. Nature 442 : 568-571, 2006   DOI
20 Kardong KV : Vertebrates: Comparative Anatomy, Function, Evolution, 4th ed. New York : McGraw-Hill College, 2005
21 Watanabe T, Saito D, Tanabe K, Suetsugu R, Nakaya Y, Nakagawa S, et al. : Tet-on inducible system combined with in ovo electroporation dissects multiple roles of genes in somitogenesis of chicken embryos. Dev Biol 305 : 625-636, 2007   DOI
22 Catala M : Genetic control of caudal development. Clin Genet 61 : 89-96, 2002   DOI
23 Catala M, Teillet MA, Le Douarin NM : Organization and development of the tail bud analyzed with the quail-chick chimaera system. Mech Dev 51 : 51-65, 1995   DOI
24 Colas JF, Schoenwolf GC : Towards a cellular and molecular understanding of neurulation. Dev Dyn 221 : 117-145, 2001   DOI
25 Tzouanacou E, Wegener A, Wymeersch FJ, Wilson V, Nicolas JF : Redefining the progression of lineage segregations during mammalian embryogenesis by clonal analysis. Dev Cell 17 : 365-376, 2009   DOI
26 Uchikawa M, Yoshida M, Iwafuchi-Doi M, Matsuda K, Ishida Y, Takemoto T, et al. : B1 and B2 Sox gene expression during neural plate development in chicken and mouse embryos: universal versus species-dependent features. Dev Growth Differ 53 : 761-771, 2011   DOI
27 Wymeersch FJ, Huang Y, Blin G, Cambray N, Wilkie R, Wong FC, et al. : Position-dependent plasticity of distinct progenitor types in the primitive streak. Elife 5 : e10042, 2016   DOI
28 Tucker AS, Slack JM : Tail bud determination in the vertebrate embryo. Curr Biol 5 : 807-813, 1995   DOI