Browse > Article
http://dx.doi.org/10.3340/jkns.2017.0203.002

Bone Flap Resorption Following Cranioplasty with Autologous Bone : Quantitative Measurement of Bone Flap Resorption and Predictive Factors  

Park, Sang Pil (Department of Neurosurgery, Eulji University Eulji Hospital)
Kim, Jae Hoon (Department of Neurosurgery, Eulji University Eulji Hospital)
Kang, Hee In (Department of Neurosurgery, Eulji University Eulji Hospital)
Kim, Deok Ryeong (Department of Neurosurgery, Eulji University Eulji Hospital)
Moon, Byung Gwan (Department of Neurosurgery, Eulji University Eulji Hospital)
Kim, Joo Seung (Department of Neurosurgery, Eulji University Eulji Hospital)
Publication Information
Journal of Korean Neurosurgical Society / v.60, no.6, 2017 , pp. 749-754 More about this Journal
Abstract
Objective : To quantitatively measure the degree of bone flap resorption (BFR) following autologous bone cranioplasty and to investigate factors associated with BFR. Methods : We retrospectively reviewed 29 patients who underwent decompressive craniectomy and subsequent autologous bone cranioplasty between April 2005 and October 2014. BFR was defined as : 1) decrement ratio ([the ratio of initial BF size/craniectomy size]-[the ratio of last BF/craniectomy size]) >0.1; and 2) bone flap thinning or geometrical irregularity of bone flap shape on computed tomographic scan or skull plain X-ray. The minimal interval between craniectomy and cranioplasty was one month and the minimal follow-up period was one year. Clinical factors were compared between the BFR and no-BFR groups. Results : The time interval between craniectomy and cranioplasty was $175.7{\pm}258.2$ days and the mean period of follow up was $1364{\pm}886.8$ days. Among the 29 patients (mean age 48.1 years, male : female ratio 20 : 9), BFR occurred in 8 patients (27.6%). In one patient, removal of the bone flap was carried out due to severe BFR. The overall rate of BFR was $0.10{\pm}0.11$ over 3.7 years. Following univariate analysis, younger age ($30.5{\pm}23.2$ vs. $54.9{\pm}13.4$) and longer follow-up period ($2204.5{\pm}897.3$ vs. $1044.1{\pm}655.1$) were significantly associated with BFR (p=0.008 and 0.003, respectively). Conclusion : The degree of BFR following autologous bone cranioplasty was 2.7%/year and was associated with younger age and longer follow-up period.
Keywords
Autografts; Bone resorption;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Bobinski L, Koskinen LO, Lindvall P : Complications following cranioplasty using autologous bone or polymethylmethacrylate--retrospective experience from a single center. Clin Neurol Neurosurg 115 : 1788-1791, 2013   DOI
2 Bowers CA, Riva-Cambrin J, Hertzler DA 2nd, Walker ML : Risk factors and rates of bone flap resorption in pediatric patients after decompressive craniectomy for traumatic brain injury. J Neurosurg Pediatr 11 : 526-532, 2013   DOI
3 Brommeland T, Rydning PN, Pripp AH, Helseth E : Cranioplasty complications and risk factors associated with bone flap resorption. Scand J Trauma Resusc Emerg Med 23 : 75, 2015   DOI
4 Chang V, Hartzfeld P, Langlois M, Mahmood A, Seyfried D : Outcomes of cranial repair after craniectomy. J Neurosurg 112 : 1120-1124, 2010   DOI
5 Cheng CH, Lee HC, Chen CC, Cho DY, Lin HL : Cryopreservation versus subcutaneous preservation of autologous bone flaps for cranioplasty: comparison of the surgical site infection and bone resorption rates. Clin Neurol Neurosurg 124 : 85-89, 2014   DOI
6 Daou B, Zanaty M, Chalouhi N, Dalyai R, Jabbour P, Yang S, et al. : Low incidence of bone flap resorption after native bone cranioplasty in adults. World Neurosurg 92 : 89-94, 2016   DOI
7 Dunisch P, Walter J, Sakr Y, Kalff R, Waschke A, Ewald C : Risk factors of aseptic bone resorption: a study after autologous bone flap reinsertion due to decompressive craniectomy. J Neurosurg 118 : 1141-1147, 2013   DOI
8 Gooch MR, Gin GE, Kenning TJ, German JW : Complications of cranioplasty following decompressive craniectomy: analysis of 62 cases. Neurosurg Focus 26 : E9, 2009
9 Grant GA, Jolley M, Ellenbogen RG, Roberts TS, Gruss JR, Loeser JD : Failure of autologous bone-assisted cranioplasty following decompressive craniectomy in children and adolescents. J Neurosurg 100(2 Suppl Pediatrics) : 163-168, 2004   DOI
10 Honeybul S, Janzen C, Kruger K, Ho KM : The impact of cranioplasty on neurological function. Br J Neurosurg 27 : 636-641, 2013   DOI
11 Honeybul S, Morrison DA, Ho KM, Lind CR, Geelhoed E : A randomized controlled trial comparing autologous cranioplasty with custom-made titanium cranioplasty. J Neurosurg 126 : 81-90, 2017   DOI
12 Im SH, Jang DK, Han YM, Kim JT, Chung DS, Park YS : Long-term incidence and predictive factors of cranioplasty infection after decompressive craniectomy. J Korean Neurosurg Soc 52 : 396-403, 2012   DOI
13 Finkemeier CG : Bone-grafting and bone-graft substitutes. J Bone Joint Surg Am 84-A : 454-464, 2002
14 Iwama T, Yamada J, Imai S, Shinoda J, Funakoshi T, Sakai N : The use of frozen autogenous bone flaps in delayed cranioplasty revisited. Neurosurgery 52 : 591-596, 2003   DOI
15 Martin KD, Franz B, Kirsch M, Polanski W, von der Hagen M, Schackert G, et al. : Autologous bone flap cranioplasty following decompressive craniectomy is combined with a high complication rate in pediatric traumatic brain injury patients. Acta Neurochir (Wien) 156 : 813-824, 2014   DOI
16 Piedra MP, Thompson EM, Selden NR, Ragel BT, Guillaume DJ : Optimal timing of autologous cranioplasty after decompressive craniectomy in children. J Neurosurg Pediatr 10 : 268-272, 2012   DOI
17 Rocque BG, Amancherla K, Lew SM, Lam S : Outcomes of cranioplasty following decompressive craniectomy in the pediatric population. J Neurosurg Pediatr 12 : 120-125, 2013   DOI
18 Schoekler B, Trummer M : Prediction parameters of bone flap resorption following cranioplasty with autologous bone. Clin Neurol Neurosurg 120 : 64-67, 2014   DOI
19 Schwarz F, Dunisch P Walter J, Sakr Y, Kalff R, Ewald C : Cranioplasty after decompressive craniectomy: is there a rationale for an initial artificial bone-substitute implant? A single-center experience after 631 procedures. J Neurosurg 124 : 710-715, 2016   DOI
20 Shoakazemi A, Flannery T, McConell RS : Long-term outcome of subcutaneously preserved autologous cranioplasty. Neurosurgery 65 : 505-510; discussion 510, 2009   DOI
21 Wiggins A, Austerberry R, Morrison D, Ho KM, Honeybul S : Cranioplasty with custom-made titanium plates--14 years experiences. Neurosurgery 72 : 248-256; discussion 256, 2013   DOI
22 Stieglitz LH, Fung C, Murek M, Fichtner J, Raabe A, Beck J : What happens to the bone flap? Long-term outcome after reimplantation of cryoconserved bone flaps in a consecutive series of 92 patients. Acta Neurochir (Wien) 157 : 275-280, 2015   DOI