Browse > Article
http://dx.doi.org/10.3741/JKWRA.2022.55.2.121

Predicting the amount of water shortage during dry seasons using deep neural network with data from RCP scenarios  

Jang, Ock Jae (Department of Civil Engineering, University of Seoul)
Moon, Young Il (Department of Civil Engineering, University of Seoul)
Publication Information
Journal of Korea Water Resources Association / v.55, no.2, 2022 , pp. 121-133 More about this Journal
Abstract
The drought resulting from insufficient rainfall compared to the amount in an ordinary year can significantly impact a broad area at the same time. Another feature of this disaster is hard to recognize its onset and disappearance. Therefore, a reliable and fast way of predicting both the suffering area and the amount of water shortage from the upcoming drought is a key issue to develop a countermeasure of the disaster. However, the available drought scenarios are about 50 events that have been observed in the past. Due to the limited number of events, it is difficult to predict the water shortage in a case where the pattern of a natural disaster is different from the one in the past. To overcome the limitation, in this study, we applied the four RCP climate change scenarios to the water balance model and the annual amount of water shortage from 360 drought events was estimated. In the following chapter, the deep neural network model was trained with the SPEI values from the RCP scenarios and the amount of water shortage as the input and output, respectively. The trained model in each sub-basin enables us to easily and reliably predict the water shortage with the SPEI values in the past and the predicted meteorological conditions in the upcoming season. It can be helpful for decision-makers to respond to future droughts before their onset.
Keywords
Water shortage prediction; Deep neural network; RCP scenarios;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Belayneh, A., Adamowski, J., Khalil, B., and Ozga-Zielinski, B. (2013). "Long-term SPI drought forecasting in the Awash River basin in Ethiopia using wavelet neural network and wavelet support vector regression models." Journal of Hydrology, Vol. 508, pp. 418-429.   DOI
2 Jang, O.J., Moon, Y.I., and Moon, H.T. (2021). "Methodology for assessment and forecast of drought severity based on the water balance analysis." Journal of Korea Water Resource Associate, Vol. 54, No. 4, pp. 241-254.
3 Kogan, F.N. (2000). "Contribution of remote sensing to drought early warning." Proceedings of an Expert Group Meeting: Early Warning Systems for Drought Preparedness and Drought Management, WMO, Lisbon, Portugal, pp. 86-100.
4 Nam, W.H., Choi, J.Y., Yoo, S.H., and Jang, M. W. (2012). "A decision support system for agricultural drought management using risk assessment." Paddy and Water Environment, Vol. 10, pp. 197-207.   DOI
5 Wilhite, D.A., Svoboda, M.D. (2000). Drought early warning systems in the context of drought preparedness and Mitigation, World Meteorological Organization, Geneva, Switzerland, pp. 1-21.
6 Yue, Y., Wang, L., Li, J., and Zhu, A. (2018). "An EPIC model-based wheat drought risk assessment using new climate scenarios in China." Climate Change, Vol. 147, pp. 539-553.   DOI
7 Zargar, A., Sadiq, R., Naser, B., and Khan, F.I. (2011). "A review of drought indices." Environmental Reviews, Vol. 19, pp. 333-349.   DOI
8 Gusyev, M.A., Hasegawa, A., Magome, J., Umino, H., and Sawano, H. (2015). "Drought assessment in the Pampanga River basin, the Philippines. III: Evaluating climate change impacts on dam infrastructure with standardized indices." Proceedings 21st International Congress on Modelling and Simulation, MSSANZ, Canberra, Australia. pp. 1586-1592.
9 Allen, R.G, Pereira, L.S., Raes, D., and Smith, M. (1998). Crop evapotranspiration - guidelines for computing crop water requirements. FAO irrigation and drainage paper 56, ISBN 92-5-104219-5, Food and Agriculture Organization, Rome, Italy, pp. 15-86.
10 Bloomfield, J.P., and Marchant, B.P. (2013). "Analysis of groundwater drought building on the standardised precipitation index approach." Hydrology and Earth System Sciences, Vol. 17, pp. 4769-4787.   DOI
11 Kim, S.J., Kim, M.I., Lim, C.H., Lee, W.K., and Kim, B.J. (2017). "Applicability analysis of FAO-56 Penman-Monteith methodology for estimating potential evapotranspiration in Andong dam watershed using limited meterological data." Journal of Climate Change Research, Vol. 8, No. 2, pp. 125-143.   DOI
12 Kim, S.J., Parhi, P., Jun, H.D., and Lee, J.H. (2018). "Evaluation of drought severity with a Bayesian Network analysis of multiple drought indices." Journal of Water Resources Planning and Management, Vol. 144, No. 1, pp. 1-10.
13 K-water (2007). K-MODSIM manual ver. 1.1, pp. 1-40.
14 National Drought Information-Analysis Center (NDIC). (2016). Response guidebook for drought disaster, p. 117.
15 Lim, J.D., and Yang, J.S. (2020). "Possibility analysis of future droughts using long short term memory and standardized groundwater level index." Journal of Korea Water Resource Associate, Vol. 53, No. 2, pp. 131-140.
16 McKee, T.B., Doesken, N.J., and Kleist, J. (1993). "The relationship of drought frequency and duration to time scales." 8th Conference on Applied Climatology, AMS Publications, Boston, MA, U.S.
17 Ministry of the Interior and Safety (MOIS). (2018). National statistical information for drought in the year 2018, pp. 117-128.
18 Naumann, G., Spinoni, J., Vogt, J.V., and Barbosa, P. (2015). "Assessment of drought damages and their uncertainties in Europe." Environmental Research Letters, Vol. 10, pp. 1-14.
19 Nielsen, M. (2020). Neural networks and deep learning, accessed 10 October 2020, .
20 Raschka, S., and Mirjalili, V. (2019). Python Machine Learning-Second Edition, Packt, Birmingham, U.K., pp. 418-455.
21 Shukla, S., and Wood, A.W. (2008). "Use of a standardized runoff index for characterizing hydrologic drought." Geophysical Research Letters, Vol. 35, No. 2, L02405.   DOI
22 Korea Meteorological Administration (KMA) (2020). Korea, accessed 05 November 2020, .
23 Vicente-Serrano, S.M., Begueria, S., and Lopez-Moreno, J.I. (2010). "A multi-scalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index." Journal of Climate, Vol. 23, pp. 1696-1718.   DOI
24 Water Resources Management Information System (WAMIS) (2020). Korea, accessed 22 October 2020, .
25 Wilhite, D.A. (1993). Drought assessment, management, and planning: theory and case studies. Natural Resource Management and Policy Series. ISBN No. 978-0-7923-9337-5, Kluwer Publishers, Boston, MA, U.S., pp. 3-15.
26 Ministry of Land, Infrastructure and Transport (MOLIT). (2016). National water resources plan (2001~2020) (3rd rev.). Publication No. 11-1613000-001716-13, pp. 198-233.