Browse > Article
http://dx.doi.org/10.3741/JKWRA.2021.54.4.265

Estimation of ungauged Hwanggang dam inflow using Sentinel-2 optical satellite imagery  

Kim, Jingyeom (Water Resources Management Research Center, K-water Research Institute)
Kim, Eunji (Department of Civil Engineering, Dankook University)
Kang, Boosik (Department of Civil Engineering, Dankook University)
Publication Information
Journal of Korea Water Resources Association / v.54, no.4, 2021 , pp. 265-277 More about this Journal
Abstract
The Hwanggang Dam in North Korea is located upstream of the Imjin River which is a shared river on the border. It is known to have a reservoir capacity of 350 million cubic meters, which is about 1.5 times larger than Paldang Dam in South Korea, and releases a discharge largely for generating hydroelectric power and partly for transferring to the Yesung River basin. Due to the special national security issues in the region, data sharing between the south and north Koreas is not made, and flood damage risk due to heavy storm and unauthorized discharge is remained in the south Korean-side downstream region. However, It is still difficult to forecast the flood because the operating information of the Hwanggang Dam is not shared. In this study, a dam inflow and reservoir water level change modeling system was constructed using lumped hydrological model and reservoir operation algorithm based on AutoROM. Dam inflow was verified indirectly using remotely sensed water level derived by Sentinel-2 optical satellite and 10m high-resolution terrain map. Coefficient of determination (R2) derived as 0.76 for water level changing from Jan. 2017 to Aug. 2020.
Keywords
Sentinel-2 satellite; Reservoir operation; Ungauged basin; Imjin river; Hwanggang dam;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Baek, K.O., Choi, Y.H., and Lim, D.H. (2010). A plan for preventing disaster by water at Imjin river. 2009-82, Gyeonggi Research Institute, pp. 9-13.
2 Carroll, M.L., Townshend, J.R., DiMiceli, C.M., Noojipady, P., and Sohlberg, R.A. (2009). "A new global raster water mask at 250 m resolution." International Journal of Digital Earth, Vol. 2, pp. 291-308.   DOI
3 Xu, H.Q. (2006). "Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery." International Journal of Remote Sensing, Vol. 27, pp. 3025-3033.   DOI
4 Yang, W.S., Ahn, J.H., and Yi, J.E. (2017). "A study on the measures to use Gunnam flood control reservoir through a reservoir simulation model." Journal of Korean Water Resources Association, Vol. 42, No. 1, pp. 407-418.
5 Lee, K.Y., and Kim, Y.S. (2011). "Extraction of waterline from X-band satellite SAR Images." Aerospace Engineering and Technology, Vol. 10, No. 2, pp. 163-169.
6 McFeeters, S.K. (1996). "The use of the normalized difference water index (NDWI) in the delineation of open water features." International Journal of Remote Sensing, Vol. 17, pp. 1425-1432.   DOI
7 Ministry of Construction & Transportation (MCT) (2007). Basic and detailed design of Gunnam flood control reservoir.
8 Ministry of Environment (ME) (2019). Standard guidelines for flood estimation.
9 Du, Z, Li, W., Zhou, D., Tian, L., Ling, F., Wang, H., Gui, Y., and Sun, B. (2014). "Analysis of Landsat-8 OLI imagery for land surface water mapping." Remote Sensing Letters, Vol. 5, pp. 672-681.   DOI
10 Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laverinti, P., Martimort, P., Meygret, A., Spoto, F., Sy, O., Marchese, F., and Bargellini, P. (2012). "Sentinel-2: ESA's optical high-resolution mission for GMES operational services." Remote Sensing of Environment, Vol. 120, No. 15, pp. 25-36.   DOI
11 Feng, L., Hu, C., Chen, X., Cai, X., Tian, L., and Gan, W. (2012). "Assessment of inundation changes of Poyang Lake using MODIS observations between 2000 and 2010." Remote Sensing of Environment, Vol. 121, pp. 80-92.   DOI
12 Ha, D.T.T., Kim, S.H., and Bae, D.H. (2020). "Impacts of upstream structures on downstream discharge in the transboundary Imjin River basin, Korean Peninsula." Applied Sciences, Vol. 10, No. 9, p. 3333.   DOI
13 Huang, C., Chen, Y., and Wu, J. (2014) "Mapping spatio-temporal flood inundation dynamics at large river basin scale using time-series flow data and MODIS imagery." International Journal of Applied Earth Observation and Geoinformation, Vol. 26, pp. 350-362.   DOI
14 Park, J.H., and Hur, Y.T. (2009). "Flood runoff simulation using physical based distributed model for Imjin-River basin." Journal of Korean Water Resources Association, Vol. 42, No. 1, pp. 51-60.   DOI
15 Hui, F., Xu, B., Huang, H., Yu, Q., and Gong, P. (2008). "Modelling spatial-temporal change of Poyang Lake using multitemporal landsat imagery." International Journal of Remote Sensing, Vol. 29, pp. 5767-5784.   DOI
16 Jang, M.W., Lee, H.J., Kim, Y.H., and Hong, S.Y. (2011). "Applicability of satellite SAR imagery for estimating reservoir storage." Journal of the Korean Society of Agricultural Engineers, Vol. 53, No. 6, pp. 7-16.   DOI
17 Rokni, K., Ahmad, A., Selamat, A., and Hazini, S. (2014). "Water feature extraction and change detection using multitemporal landsat imagery." Remote Sensing, Vol. 6, No. 5, pp. 4173-4189.   DOI
18 Kim, B.S., Bae, Y.H., Park, J.S., and Kim, K.T. (2008). "Flood runoff simulation using radar rainfall and distributed hydrologic model in un-gauged basin; Imjin River basin." Journal of the Korean Association of Geographic Information Studies, Vol. 11, No. 3, pp. 52-67.
19 Park, S.J., and Lee, C.W. (2018). "Simulation of the flood damage area of the Imjin River basin in the case of North Korea's Hwanggang dam discharge." Korean Journal of Remote Sensing, Vol. 34, No. 6-1, pp. 1033-1039.   DOI
20 Seo, M.J., Kim. D.K., Ahmad, W., and Cha, J.H. (2018). "Estimation of stream flow discharge using the satellite synthetic aperture radar images at the mid to small size streams." Journal of Korea Water Resources Association, Vol. 1. No. 12, pp. 1181-1194.
21 Jeon, H.G., Kim, D.J., Kim, J.W., Suresh, K., Kim, J.E., Kim. T.I., and Jeong, S.H. (2020). "Selection of optimal band combination for machine learning-based water body extraction using SAR satellite images." Journal of the Korean Assciation of Geographic Information Studies, Vol. 23, No. 3, pp. 120-131.
22 Kim, D.H., Lee, H.K., Jung, J.C., Hwang, E.H., Hossain, F., Bonnema, M., Kang, D.H., and Getirana, A. (2020). "Monitoring river basin development and variation in water resources in transboundary Imjin River in North and South Korea using remote sensing." Remote Sensing, Vol. 12, No. 1, p. 195.   DOI
23 Kim, D.P., Kim K.H., and Kim, J.H. (2011). "Runoff estimation of Imjin River basin through April 5th dam and Hwanggang Dam construction of North Korea." Journal of the Environmental Sciences, Vol. 20, No. 12, pp. 1635-1646.   DOI
24 Lee, G.M., Kang, B.S., and Hong, I.P. (2008). "Cooperative framework for conflict mitigation and shared use of South-North Korean transboundary rivers." Journal of the Korean Society of Civil Engineers, Vol. 28, No. 5B. pp. 505-514.
25 Jang, S.H., Lee, J.K., and Jo, J.W. (2020). "Evaluation of instream flow in the Imjingang River according to the operation of Hwanggang Dam in North Korea." Crisisonomy, Vol. 16, No. 6, pp. 105-118.