Browse > Article
http://dx.doi.org/10.3741/JKWRA.2021.54.4.229

Comparison of MIROC5 and MIROC6 projections for precipitation over South Korea  

Chae, Seung Taek (Department Civil Engineering, Seoul National University of Science and Technology)
Song, Young Hoon (Department Civil Engineering, Seoul National University of Science and Technology)
Chung, Eun-Sung (Department Civil Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Korea Water Resources Association / v.54, no.4, 2021 , pp. 229-240 More about this Journal
Abstract
This study projected the monthly precipitation for RCP4.5 and RCP8.5 of the MIROC5 and SSP2-4.5 and SSP5-8.5 of MIROC6 GCMs using observations of the historical period (1970 to 2005) of 21 stations in Korea, and then compared the performance before and after bias correction using 6 evaluation indicators. In addition, using the bias corrected GCM's scenarios, annual precipitation, summer precipitation and winter precipitation in near future period (2021-2060) and far future period (2061-2100) were calculated. Furthermore, the variability of future projection was quantified using the standard deviation and interquartile range values of future precipitation. As a result the rate of change of precipitation was greater in the northern region than in the southern region and in the far future rather than the near future. The variability in the projection were also concluded to be larger in the northern region than that in the southern regions.
Keywords
General circulation model; MIROC5; MIROC6; Quantile mapping;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Moriasi, D.N., Gitau, M.W., Pai, N., and Daggupati, P. (2015). "Hydrologic and water quality models: Performance measures and evaluation criteria." American Society of Agricultural and Biological Engineers, Vol. 58, No. 6, pp. 1763-1785.
2 Nash, J.E., and Sutcliffe, J.V. (1970). "River flow forecasting through. Part I. A conceptual models discussion of principles." Journal of Hydrology. Vol. 10, pp. 282-290.   DOI
3 O'Neill, B.C., Kriegler, E., Riahi, K., Ebi, K.L., Hallegatte, S., Carter, T.R., Mathur, R., and van Vuuren, D.P. (2014). "A new scenario framework for climate change research: The concept of shared socioeconomic pathways." Climate Change, Vol. 122, pp. 387-400.   DOI
4 Schepen, A., and Wang, Q.J. (2013). "Toward accurate and reliable forecasts of Australian seasonal rainfall by calibrating and merging multiple coupled GCMs." Monthly Weather Review, Vol. 141, pp. 4554-4563.   DOI
5 Scoccimarro, E., and Gualdi, S. (2020). "Heavy daily precipitation events in the CMIP6 worst-case scenario: Projected twenty-first-century changes." Journal of Climate, Vol. 33, pp. 7631-7642.   DOI
6 Song, Y.H., and Chung, E.S. (2020). "Intercomparison of uncertainty to bias correction methods and GCM selection in precipitation projections." Journal of Korea Water Resources Association, Vol. 53, No. 4, pp. 249-258.   DOI
7 Chen, Z., Zhou, T., Zhang, L., Chen, X., Zhang, W., and Jiang, J. (2020). "Global land monsoon precipitation changes in CMIP6 projection." Geophysical Research Letters, Vol. 47, pp. 1-9.
8 Greve, P., Kahil, T., Mochizuki, J., Schinko, T., Satoh, Y., Burek, P., Fischer, G., Tramberend, S., Burtscher, R., Langan, S., and Wada, Y. (2018). "Global assessment of water challenges under uncertainty in water scarcity projections." Nature Sustainability, Vol. 1, pp. 486-494.   DOI
9 Getirana, A.C.V., and Peters-Lidard, C. (2013). "Estimating water discharge from large radar altimetry datasets." Hydrology and Earth System Sciences, Vol. 17, pp. 923-933.   DOI
10 Golmohammadi, G., Prasher, S., Madani, A., and Rudra, R. (2014). "Evaluating three hydrological distributed watershed models: MIKE-SHE, APEX, SWAT." Hydrology, Vol. 1, No. 1, pp. 20-39.   DOI
11 Xin, X., Wu T., Zhang, J., Yao, J., and Fang, Y. (2020). "Comparison of CMIP6 and CMIP5 simulations of precipitation in China and the East Asian summer monsoon." International Journal of Climatology, Vol. 40, pp. 6423-6440.   DOI
12 Gudmundsson, L., Bremnes, J.B., Haugen, J.E., and Engen-Skaugen, T. (2012). "Technical note: Downscaling RCM precipitation to the station scale using statistical transformations-a comparison of methods." Hydrology and Earth System Sciences, Vol. 16, No. 9, pp. 3383-3390.   DOI
13 Hashino, T., Bradley, A.A., and Schwartz, S.S. (2006) "Evaluation of bias-correction methods for ensemble streamflow." Hydrology and Earth System Scieces Discussion, Vol. 3, No. 2, pp. 561-594.
14 Hawkins, E., and Sutton, R. (2009). "The potential to narrow uncertainty in reginal climate predictions." Bulletin of the American Meteorological Society, Vol. 90, pp. 1095-1108.   DOI
15 Jung, I.G., Eum, H.I., Lee, E.J., Park, J.H., and Cho, J.P. (2018). "Development of representative GCMs selection technique for uncertainty in climate change scenario." Journal of Korean Society of Agricultural Engineers, Vol. 60, No. 5, pp. 149-162.   DOI
16 Homsi, R., Shiru, M,S., Shahid, S., Ismail, T., Harun, S.B., Al-Ansar, N., Chau, K.W., and Yaseen, Z.M. (2020). "Precipitation projection using a CMIP5 GCM ensemble model: A regional investigation of Syria." Engineering Applications of Computational Fluid Mechanics, Vol. 14, No. 1, pp. 90-16.   DOI
17 Hong, H.P., Park, S.Y., Kim, T.W., and Lee, J.H. (2018). "Assessment of CMIP5 GCMs for future extreme drought analysis." Journal of Korea Water Resources Association, Vol. 51, No. 7, pp. 617-627.   DOI
18 Hwang, S.W. (2014). "Assessing the performance of CMIP5 GCMs for various climatic elements and indicators over the southeast US." Journal of Korea Water Resources Association, Vol. 47, No. 11, pp. 1039-1050.   DOI
19 Khan, N., Shahid, S., Ahmed, K., Ismail, T., Nawaz, N., and Son, M. (2018). "Performance assessment of general circulation model in simulating daily precipitation and temperature using multiple gridded datasets." Water, Vol. 10, pp. 1793-1811.   DOI
20 Kim, J.H., Ivanov, V.Y., and Fatichi, S. (2015). "Climate change and uncertainty assessment over a hydroclimatic transect of Michigan." Stochastic Environmental Research and Risk Assessment, Vol. 30, pp. 923-944.   DOI
21 Kim, J.H., Sung, J.H., Chung, E.S., Kim, S.U., Son, M., and Shiru, M.S. (2021). "Comparison of projection in meteorological and hydrological droughts in the Cheongmicheon watershed for RCP4.5 and SSP2-4.5." Sustainability, Vol. 13, No. 4, 2066.   DOI
22 Koenker, R., and Schorfheide, F. (1994). "Quantile spline models for global temperature change." Climate Change, Vol. 28, pp. 395-404.   DOI
23 Taylor, K.E. (2001). "Summarizing multiple aspects of model performance in a single diagram." Journal of Geophysical Research, Vol. 106, No. 7, pp. 7183-7192.   DOI
24 Lee, S.H., Yoo, S.H., Choi, J.Y., and Hwang, S.W. (2018). "GCM-related uncertainty in forecasting irrigation and design water requirement for paddy rice fields." International Journal of Climatology, Vol. 38, pp. 1298-1313.   DOI
25 Song, Y.H., Chung, E.S., and Shiru, M.S. (2020). "Uncertainty analysis of monthly precipitation in GCMs using multiple bias correction methods under different RCPs." Sustainability, Vol. 12, No. 18, 7508.   DOI
26 Song, Y.H., Nashwan, M.S., Chung, E.S., and Shahid, S. (2021). "Advances in CMIP6 INM-CM5 over CMIP5 INM-CM4 for precipitation simulation in South Korea." Atmospheric Research, Vol. 247, pp. 1-14.
27 Tobler, W.R. (1970). "A computer movie simulating urban growth in the detroit region." Economic Geography, Vol. 46, pp. 234-240.   DOI
28 Wu, T., Lu, Y., Fang, Y., Xin, X., Li, L., Li, W., Jie, W., Zhang, J., Liu, Y., Zhang, L., Zhang, F., Zhang, Y., Wu, F., Li, J., Chu, M., Wang, Z., Shi, X., Liu, X., Wei, M., Huang, A., Zhang, Y., and Liu, X. (2019). "The Beijing climate center climate system model (BCCCSM): The main progress from CMIP5 to CMIP6." Geoscientific Model Development, Vol. 12, pp. 1573-1600.   DOI
29 Meehl, G.A., Boer, G.J., Covey, C., Latif, M., and Stouffer, R.J. (2000). "The coupled model intercomparison project (CMIP)." Bulletin of the American Meteorological Society, Vol. 81, No. 2, pp. 313-318.   DOI
30 Mishra, V., Bhatia, U., and Tiwari, A.D. (2020). "Bias-corrected climate projections for South Asia from coupled model intercomparison project-6." Scientific Data, Vol. 7, pp. 338-369.   DOI