Browse > Article
http://dx.doi.org/10.3741/JKWRA.2021.54.2.105

Evaluation of conceptual rainfall-runoff models for different flow regimes and development of ensemble model  

Yu, Jae-Ung (Department of Civil & Environmental Engineering, Sejong University)
Park, Moon-Hyung (Korea Institute of Civil Engineering and Building Technology)
Kim, Jin-Guk (Korea Institute of Civil Engineering and Building Technology)
Kwon, Hyun-Han (Department of Civil & Environmental Engineering, Sejong University)
Publication Information
Journal of Korea Water Resources Association / v.54, no.2, 2021 , pp. 105-119 More about this Journal
Abstract
An increase in the frequency and intensity of both floods and droughts has been recently observed due to an increase in climate variability. Especially, land-use change associated with industrial structure and urbanization has led to an imbalance between water supply and demand, acting as a constraint in water resource management. Accurate rainfall-runoff analysis plays a critical role in evaluating water availability in the water budget analysis. This study aimed to explore various continuous rainfall-runoff models over the Soyanggang dam watershed. Moreover, the ensemble modeling framework combining multiple models was introduced to present scenarios on streamflow considering uncertainties. In the ensemble modeling framework, rainfall-runoff models with fewer parameters are generally preferred for effective regionalization. In this study, more than 40 continuous rainfall-runoff models were applied to the Soyanggang dam watershed, and nine rainfall-runoff models were primarily selected using different goodness-of-fit measures. This study confirmed that the ensemble model showed better performance than the individual model over different flow regimes.
Keywords
Ensemble model; Continuous rainfall-runoff model; Model optimization; Uncertainty;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Khazaei, M.R., Zahabiyoun, B., and Saghafian, B. (2012). "Assessment of climate change impact on floods using weather generator and continuous rainfall‐runoff model." International Journal of Climatology, Vol. 32, No. 13, pp. 1997-2006.   DOI
2 Kim, T.-J., So, B.-J., Ryou, M.-S., and Kwon, H.-H. (2016). "Development of dam inflow simulation techniqe coupled with rainfall simulation and rainfall-runoff model." Journal of Korea Water Resource Association, Vol. 49, No. 4, pp. 315-325.   DOI
3 Kwon, H.-H., Moon, Y.-I., Kim, B.-S., and Yoon, S.-Y. (2008). "Parameter optimization and uncertainty analysis of the NWS-PC rainfall-runoff model coupled with Bayesian Markov Chain Monte Carlo Inference Scheme." Journal of The Korean Society of Civil Engineers, KSCE, Vol. 28, No. 4, pp. 383-392.
4 Lee, M.J., Kang, N.R., Kim, J.S., and Kim, H.S. (2018). "Estimation of optimal runoff hydrograph using radar rainfall ensemble and blending technique of rainfall-runoff models." Journal of Korea Water Resources Association, Vol. 51, No. 3, pp. 221-233.   DOI
5 Liang, X., Lettenmaier, D.P., Wood, E.F., and Burges, S.J. (1994). "A simple hydrologically based model of land surface water and energy fluxes for general circulation models." Journal of Geophysical Research: Atmospheres, Vol. 99, No. D7, pp. 14415-14428.   DOI
6 Lindstrom, G., Johansson, B., Persson, M., Gardelin, M., and Bergstrom, S. (1997). "Development and test of the distributed HBV-96 hydrological model." Journal of hydrology, Vol. 201, No. 1-4, pp. 272-288.   DOI
7 Lyne, V., and Hollick, M. (1979). "Stochastic time-variable rainfall-runoff modelling." Institute of Engineers Australia National Conference, Institute of Engineers Australia Barton, Australia, pp. 89-93.
8 Markstrom, S.L., Regan, R.S., Hay, L.E., Viger, R.J., Webb, R.M., Payn, R.A., and LaFontaine, J.H. (2015). PRMS-IV, the precipitation-runoff modeling system, version 4, Branch of Regional Research U.S. Geological Survey, Reston, VA, U.S., pp. 1-158.
9 Mlynski, D., Petroselli, A., and Walega, A. (2018). "Flood frequency analysis by an event-based rainfall-runoff model in selected catchments of southern Poland." Soil and Water Research, Vol. 13, No. 3, pp. 170-176.   DOI
10 Montanari, A., and Brath, A. (2004). "A stochastic approach for assessing the uncertainty of rainfall‐runoff simulations." Water Resources Research, Vol. 40, No. 1, pp. 1-11.
11 Moore, R. (1985). "The probability-distributed principle and runoff production at point and basin scales." Hydrological Sciences Journal, Vol. 30, No. 2, pp. 273-297.   DOI
12 Moore, R., and Bell, V. (2001). Comparison of rainfall-runoff models for flood forecasting. Part 1: Literature review of models, Environment Agency, Almondsbury, Bristol, UK, pp. 1-94.
13 Perrin, C., Michel, C., and Andreassian, V. (2003). "Improvement of a parsimonious model for streamflow simulation." Journal of Hydrology, Vol. 279, No. 1-4, pp. 275-289.   DOI
14 Moussa, R., and Chahinian, N. (2009). "Comparison of different multiobjective calibration criteria using a conceptual rainfall-runoff model of flood events." Hydrology and Earth System Sciences, Vol. 13, No. 4, pp. 519-535.   DOI
15 Nielsen, S.A., and Hansen, E. (1973). "Numerical simulation of the rainfall-runoff process on a daily basis." Hydrology Research, Vol. 4, No. 3, pp. 171-190.   DOI
16 O'connell, P., Nash, J., and Farrell, J. (1970). "River flow forecasting through conceptual models part II-The Brosna catchment at Ferbane." Journal of Hydrology, Vol. 10, No. 4, pp. 317-329.   DOI
17 Porter, J., and McMahon, T.A. (1976). The Monash model: user manual for daily program HYDROLOG. Department of Civil Engineering, Monash University, Victoria, Austraila, pp. 41.
18 Santos, L., Thirel, G., and Perrin, C. (2018). "Continuous state-space representation of a bucket-type rainfall-runoff model: A case study with the GR4 model using state-space GR4 (version 1.0)." Geoscientific Model Development, Vol. 11, No. 4, pp. 1591-1605.   DOI
19 Savenije, H.H. (2010). "HESS Opinions "Topography driven conceptual modelling (FLEX-Topo)."" Hydrology and Earth System Sciences, Vol. 14, No. 12, pp. 2681-2692.   DOI
20 Schaefli, B., Hingray, B., Niggli, M., and Musy, A. (2005). "A conceptual glacio-hydrological model for high mountainous catchments." Hydrology and Earth System Sciences, Vol. 9, pp. 95-109.   DOI
21 Schaefli, B., Nicotina, L., Imfeld, C., Da Ronco, P., Bertuzzo, E., and Rinaldo, A. (2014). "SEHR-ECHO v1.0: A spatially explicit hydrologic response model for ecohydrologic applications." Geoscientific Model Development, Vol. 7, No. 6, pp. 2733-2746.   DOI
22 Smakhtin, V., Sami, K., and Hughes, D. (1998). "Evaluating the performance of a deterministic daily rainfall-runoff model in a low-flow context." Hydrological Processes, Vol. 12, No. 5, pp. 797-812.   DOI
23 Schwarz, G. (1978). "Estimating the dimension of a model." The Annals of Statistics, Vol. 6, No. 2, pp. 461-464.   DOI
24 Sitterson, J., Knightes, C., Parmar, R., Wolfe, K., Muche, M., and Avant, B. (2018). An overview of rainfall-runoff model types, US Environmental Protection Agency, Washington D.C., U.S., pp. 1-29.
25 Sivapalan, M., Ruprecht, J.K., and Viney, N.R. (1996). "Water and salt balance modelling to predict the effects of land‐use changes in forested catchments. 1. Small catchment water balance model." Hydrological Processes, Vol. 10, No. 3, pp. 393-411.   DOI
26 Son, K., and Sivapalan, M. (2007). "Improving model structure and reducing parameter uncertainty in conceptual water balance models through the use of auxiliary data." Water Resources Research, Vol. 43, No. 1, pp. 1-18.
27 Spiegelhalter, D.J., Best, N.G., Carlin, B.P., and Van Der Linde, A. (2002). "Bayesian measures of model complexity and fit." Journal of the Royal Statistical Society: Series b (Statistical Methodology), Vol. 64, No. 4, pp. 583-639.   DOI
28 Sugawara, M. (1979). "Automatic calibration of the tank model/L'etalonnage automatique d'un modele a cisterne." Hydrological Sciences Journal, Vol. 24, No. 3, pp. 375-388.   DOI
29 Tajiki, M., Schoups, G., Hendricks Franssen, H., Najafinejad, A., and Bahremand, A. (2020). "Recursive Bayesian estimation of conceptual rainfall‐runoff model errors in real‐time prediction of streamflow." Water Resources Research, Vol. 56, No. 2, pp. 1-25.
30 Wagener, T., Lees, M.J., and Wheater, H.S. (2002). "A toolkit for the development and application of parsimonious hydrological models." Mathematical Models of Large Watershed Hydrology, Vol. 2, pp. 87-136.
31 Ye, S., Yaeger, M., Coopersmith, E., Cheng, L., and Sivapalan, M. (2012). "Exploring the physical controls of regional patterns of flow duration curves-Part 2: Role of seasonality, the regime curve, and associated process controls." Hydrology and Earth System Sciences, Vol. 16, No. 11, pp. 4447-4465.   DOI
32 Ye, W., Bates, B., Viney, N., Sivapalan, M., and Jakeman, A. (1997). "Performance of conceptual rainfall-runoff models in lowyielding ephemeral catchments." Water Resources Research, Vol. 33, No. 1, pp. 153-166.   DOI
33 Zhao, R. (1992). "The Xinanjiang model applied in China." Journal of hydrology, Vol. 135, No. 1-4, pp. 371-381.   DOI
34 Burnash, R.J., Ferral, R.L., and McGuire, R.A. (1973). A generalized streamflow simulation system: Conceptual modeling for digital computers. US Department of Commerce, National Weather Service. CA, U.S., pp. 12-64.
35 Akaikei, H. (1973). "Information theory and an extension of maximum likelihood principle." 2nd International Symposium on Information Theory, Edited by Petrov, B.N., and Csaki, F., Akademiai Kiado, Budapest, Hungary, pp. 267-281.
36 Atkinson, S., Sivapalan, M., Woods, R., and Viney, N. (2003). "Dominant physical controls on hourly flow predictions and the role of spatial variability: Mahurangi catchment, New Zealand." Advances in Water Resources, Vol. 26, No. 3, pp. 219-235.   DOI
37 Atkinson, S., Woods, R., and Sivapalan, M. (2002). "Climate and landscape controls on water balance model complexity over changing timescales." Water Resources Research, Vol. 38, No. 12, pp. 50-1 - 50-17.   DOI
38 Bae, D.H., and Lee, B.J. (2011). "Development of continuous rainfallrunoff model for flood forecasting on the large-scale basin." Journal of Korea Water Resource Association, Vol. 44, No. 1, pp. 51-64.   DOI
39 Bai, Y., Wagener, T., and Reed, P. (2009). "A top-down framework for watershed model evaluation and selection under uncertainty." Environmental Modelling & Software, Vol. 24, No. 8, pp. 901-916.   DOI
40 Chiew, F., and McMahon, T. (1994). "Application of the daily rainfall-runoff model MODHYDROLOG to 28 Australian catchments." Journal of Hydrology, Vol. 153, No. 1-4, pp. 383-416.   DOI
41 Chiew, F.H.S., Peel, M.C., and Western, A.W. (2002). "Application and testing of the simple rainfall-runoff model SIMHYD." Mathematical Models of Small Watershed Hydrology and Applications, Edited by Vijay, P.S. and Donald, K.F., Water Resources Publications, CO, U.S., pp. 335-367.
42 Crooks, S., and Naden, P. (2007). "CLASSIC: A semi-distributed rainfall-runoff modelling system." Hydrology and Earth System Sciences, Vol. 11, No. 1, pp. 516-531.   DOI
43 Daliakopoulos, I.N., and Tsanis, I.K. (2016). "Comparison of an artificial neural network and a conceptual rainfall-runoff model in the simulation of ephemeral streamflow." Hydrological Sciences Journal, Vol. 61, No. 15, pp. 2763-2774.   DOI
44 Duan, Q., Ajami, N. K., Gao, X., and Sorooshian, S. (2007). "Multi-model ensemble hydrologic prediction using Bayesian model averaging." Advances in Water Resources, Vol. 30, No. 5, pp. 1371-1386.   DOI
45 Edijatno, N., De Oliveira Nascimento, N., Yang, X., Makhlouf, Z., and Michel, C. (1999). "GR3J: A daily watershed model with three free parameters." Hydrological Sciences Journal, Vol. 44, No. 2, pp. 263-277.   DOI
46 Eder, G., Sivapalan, M., and Nachtnebel, H. (2003). "Modelling water balances in an Alpine catchment through exploitation of emergent properties over changing time scales." Hydrological Processes, Vol. 17, No. 11, pp. 2125-2149.   DOI
47 Edijatno, N., and Michel, C. (1989). "Un modele pluie-debit journalier a trois parametres." La Houille Blanche, Vol. 2, pp. 113-121.   DOI
48 Beven, K. (1997). "TOPMODEL: A critique." Hydrological processes, Vol. 11, No. 9, pp. 1069-1085.   DOI
49 Farmer, D., Sivapalan, M., and Jothityangkoon, C. (2003). "Climate, soil, and vegetation controls upon the variability of water balance in temperate and semiarid landscapes: Downward approach to water balance analysis." Water Resources Research, Vol. 39, No. 2, pp. 1-1-1-21.
50 Fenicia, F., Savenije, H.H., Matgen, P., and Pfister, L. (2008). "Understanding catchment behavior through stepwise model concept improvement." Water Resources Research, Vol. 44, No. 1, pp. 1-13.
51 Fukushima, Y. (1988). "A model of river flow forecasting for a small forested mountain catchment." Hydrological Processes, Vol. 2, No. 2, pp. 167-185.   DOI
52 Garcia, F., Folton, N., and Oudin, L. (2017). "Which objective function to calibrate rainfall-runoff models for low-flow index simulations?" Hydrological Sciences Journal, Vol. 62, No. 7, pp. 1149-1166.   DOI
53 Jakeman, A., Littlewood, I., and Whitehead, P. (1990). "Computation of the instantaneous unit hydrograph and identifiable component flows with application to two small upland catchments." Journal of Hydrology, Vol. 117, No. 1-4, pp. 275-300.   DOI
54 Kalin, L., Isik, S., Schoonover, J.E., and Lockaby, B.G. (2010). "Predicting water quality in unmonitored watersheds using artificial neural networks." Journal of Environmental Quality, Vol. 39, No. 4, pp. 1429-1440.   DOI
55 Jothityangkoon, C., Sivapalan, M., and Farmer, D. (2001). "Process controls of water balance variability in a large semi-arid catchment: Downward approach to hydrological model development." Journal of Hydrology, Vol. 254, No. 1-4, pp. 174-198.   DOI