Browse > Article
http://dx.doi.org/10.3741/JKWRA.2020.53.12.1109

A study of comparison about estimation methods of sediment yield  

Kwon, Hyuk Jae (Department of Civil Engineering, Cheongju University)
Kim, Hyeong Gi (Department of Civil Engineering, Cheongju University)
Publication Information
Journal of Korea Water Resources Association / v.53, no.12, 2020 , pp. 1109-1117 More about this Journal
Abstract
In this study, results of RUSLE which is most popular equation for estimating sediment and MSDPM and LADMP have been compared and analyzed by applying to real watershed of mountain area. Crop factor (C), preservation factor (P), and soil erosion factor (VM) of RUSLE can be subjectively selected and differently applied. Therefore, effects of those factors were estimated and compared with different values of factors. Furthermore, sediment yield has been estimated by MSDPM and LADMP according to 10, 20, 30, 50, 100, and 200 year return period. From the results, it was found that sediment yield can be resulted with 400% diffrence. And it was also found that MSDPM and LADMP can be applied in mountain area of Korea.
Keywords
Rainfall intensity; Sediment yield; LADMP; MSDPM; RUSLE;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Erickson, A.J. (1997). Aids for estimating soil erodibility - K value class and soil loss tolerance. U.S. Department of Agriculture. Soil Conservation Service. U.S.
2 Gatwood, E., Pedersen, J., and Casey, K. (2000). Los Angeles district method for prediction of debris yield. U.S. Army Corps of Engineers, Los Angeles District, Los Angeles, CA, U.S.
3 Jee, Y.K., Park, I.C., and Kim, B.S. (2017). "Sediment yield estimation of the erosion control dam basin and analysis of watershed characterization using RUSLE." Journal of the Korean Society of Hazard Mitigation, Vol. 17, No. 1, pp. 123-130.   DOI
4 Jeong, J.C. (2016). "Estimation of soil erosion using national land cover map and USLE." Journal of Environmental Impact Assessment, Vol. 25, No. 6, pp. 525-531.   DOI
5 Kim, J.H. (2012). "Estimation of sediment yield to Sangju-dam of Nakdong-river using the RUSLE Model." Proceedings 2012 Annual Conference, Korea Water Resources Association, pp. 495-499.
6 Kwon, H.J. (2011). "Sediment yield estimation of Gangwon Mountain region in Korea." Journal of the Korean Society of Hazard Mitigation, Vol. 11, No. 3, pp. 127-132.   DOI
7 McCool, D.K., Brown, L.C., Foster, G.R., Mutchler, C.K., and Meyer, L.D. (1987). "Revised slope steepness factor for the universal soil loss equation." Transactions of the American Society of Agricultural Engineering, Vol. 30, No. 5, pp. 1387-1396.   DOI
8 Ministry of Environment (ME) (2019). Notice on the investigation of erosion status of topsoil.
9 Nearing, M.A. (1997). "A single, continuous function for slope steepness influence on soil loss." Soil Science Society of America Journal, Vol. 61, No. 3, pp. 917-919.   DOI
10 Pak, J.H. (2005). A real-time debris prediction model (USCDPM) incorporating wildfire and subsequent storm events. Ph.D. dissertation, University of Southern California, Los Angeles, CA, U.S.
11 Pak, J.H., and Lee, J.J. (2008). "A statistical sediment yield prediction model incorporating the effect of fires and subsequent storm events." Journal of the American Water Resources Association, Vol. 44, No. 3, pp. 689-699.   DOI
12 Wischmeier, W.H., Johnson, C.B., and Cross, B.V. (1971). "A soil erodibility nomograph for farmland and construction sites." Journal of soil and water conservation, Vol. 26, pp. 189-192.
13 Renard, K.G., Foster, G.R., Weesies, G.A., McCool, D.K., and Yoder, D.C., (1997). Predicting soil erosion by water: A guide to conservation planning with the revised universal soil loss equation (RUSLE). U.S. Depart of Agriculture Handbook No. 703, United States Department of Agriculture, Washington, D.C., U.S.
14 Tatum, F.E. (1963). "A new method of estimating debris-storage requirements for Debris basin." Second National Conference on Sedimentation of the Subcommittee on Sedimentation, ICWR, Jackson, MS, U.S.
15 Transport Research Board (TRB) (1980). "Design of sedimentation basins." National Cooperative Highway Research Program Synthesis of Highway Practice #70. U.S.