Browse > Article
http://dx.doi.org/10.3741/JKWRA.2011.44.3.199

Development of Real-Time River Flow Forecasting Model with Data Assimilation Technique  

Lee, Byong-Ju (Hydrometeorological Resources Research Team, Applied Meteorology Research Division, National Institute of Meteorological Research)
Bae, Deg-Hyo (Dept. of Civil and Environmental Engineering, Sejong University)
Publication Information
Journal of Korea Water Resources Association / v.44, no.3, 2011 , pp. 199-208 More about this Journal
Abstract
The objective of this study is to develop real-time river flow forecast model by linking continuous rainfall-runoff model with ensemble Kalman filter technique. Andong dam basin is selected as study area and the model performance is evaluated for two periods, 2006. 7.1~8.18 and 2007. 8.1~9.30. The model state variables for data assimilation are defined as soil water content, basin storage and channel storage. This model is designed so as to be updated the state variables using measured inflow data at Andong dam. The analysing result from the behavior of the state variables, predicted state variable as simulated discharge is updated 74% toward measured one. Under the condition of assuming that the forecasted rainfall is equal to the measured one, the model accuracy with and without data assimilation is analyzed. The model performance of the former is better than that of the latter as much as 49.6% and 33.1% for 1 h-lead time during the evaluation period, 2006 and 2007. The real-time river flow forecast model using rainfall-runoff model linking with data assimilation process can show better forecasting result than the existing methods using rainfall-runoff model only in view of the results so far achieved.
Keywords
continuous rainfall-runoff model; ensemble Kalman filter; real-time river flow forecast; data assimilation;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Sloan, P.G., and Moore, I.D. (1984). “Modeling subsurface stormflow on steeply sloping forested watersheds.” Water Resources Research, Vol. 20, No. 12, pp. 1815-1822.   DOI
2 Sloan, P.G., Morre, I.D., Coltharp, G.B., and Eigel, J.D. (1983). Modeling surface and subsurface stormflow on steeply-sloping forested watersheds. Water Resources Institute Report 142. University of Kentucky, Lexington.
3 Soil Conservation Service (1972). National Engineering Handbook: section 4 - Hydrology. SCS.
4 배덕효, 정일문 (2000). “저류함수법에 의한 추계동역학적 하도홍수추적모형의 개발.” 한국수자원학회논문집, 한국수자원학회, 제33권, 제3호, pp. 341-350.
5 안상진, 이재경, 한양수, 전계원 (2002). “유출예측모형을 이용한 홍수유출해석.” 대한토목학회논문집, 대한토목학회, 제22권, 제3-B호, pp. 311-319.
6 이병주, 배덕효, Shamir E. (2009). “앙상블 칼만필터를 연계한 추계학적 연속형 저류함수모형 개발 (II): -적용 및 검증-.” 한국수자원학회논문집, 한국수자원학회, 제42권, 제11호, pp. 963-972.
7 한건연, 손인호, 이재영 (2000). “실시간 범람위험도 예측을 위한 수리학적 모형의 개발.” 한국수자원학회논문집, 한국수자원학회, 제33권, 제3호, pp. 331-340.
8 Arnold, J.G., Allen, P.M., and Bernhardt, G. (1993). “A comprehensive surface-groundwater flow model.” Journal of Hydrology, Vol. 142, pp. 47-69.   DOI
9 Arnold, J.G., Srinivasan, R., Muttiah, R.S., and Willams, J.R. (1998). “Large area hydrologic modeling and assessment part I: model development.” Journal of the American Water Resources Association, Vol. 34, No. 1, pp. 73-89.   DOI
10 Bloschl, G., Reszler, C., and Komma, J. (2008). “A spatially distributed flash flood forecasting model.” Environmental Modelling & Software, Vol. 23, pp. 464-478.   DOI
11 Clark, M.P., Rupp, D.E., Woods, R.A., Zheng, X., Ibbitt, R.P., Slater, A.G., Schmidt, J., and Uddstrom, M.J. (2008). “Hydrological data assimilation with theensemble Kalman filter: use of streamflow observation to update states in a distributed hydrological model.” Advances in Water Resources, Vol. 31, pp. 1309-1324.   DOI
12 Evensen, G. (1992). “Using the extended Kalman filter with a multilayer quasi-geostrophic ocean model.” Journal of Geophysical Research-Oceans, Vol. 97, No. C11, pp. 17905-17924.   DOI
13 Evensen, G. (1994). “Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics.” Journal of Geophysical Research, Vol. 99, No. C5, pp. 10143-10162.   DOI
14 김상호 (2003). “Kalman Filtering 기법을 이용한 수리학적 홍수예측.” 대한토목학회논문집, 대한토목학회, 제23권, 제6B호, pp. 541-549.
15 배덕효 (1997). “저류함수법을 이용한 추계학적 실시간 홍수예측모형 개발.” 한국수자원학회논문집, 한국수자원학회, 제30권, 제5호, pp. 449-457.
16 배덕효, 이병주 (2011). “대유역 홍수예측을 위한 연속형 강우-유출모형 개발.” 한국수자원학회논문집, 한국수자원학회, 제44권, 제1호, pp. 51-64.
17 배덕효, 이병주, Shamir E. (2009). “앙상블 칼만필터를 연계한 추계학적 연속형 저류함수모형 개발 ( I ): -모형개발-.” 한국수자원학회논문집, 한국수자원학회, 제42권, 제11호, pp. 953-961.
18 Maybeck, P.S. (1979). Stochastic models, estimation and control, Volume 1. Academic Press, New York.
19 Wagerner T., Boyle, D.P., Lees, M.J., Wheater, H.S., Gupta, H.V., and Sorooshian, S. (2001). “A framework for development and application of hydrological models.” Hydrology and Earth System Sciences, Vol. 5, No. 1, pp. 13-26.   DOI
20 Young, P.C. (2002). “Advances in real-time flood forecasting.” Philosophical Transactions of the Royal Society of London, Vol. 360, pp. 1433-1450.   DOI
21 Moradkhani, H., Sorooshian, S., Gupta H.V., and Houser, P.R. (2005). “Duel state parameter estimation of hydrological models using ensemble Kalman filter.” Advances in Water Resources, Vol. 28, pp. 135-147.   DOI
22 Georgakakos, K.P. (2008). Formulation of a system for flood forecasting in Korea based on the storage function method and distributed filtering technique. HRC Technical Note, No. 32.
23 Kalman, R. (1960). “New approach to linear filtering and prediction problems.” Trans AMSE, Journal of Basic Engineering, Vol. 82D, pp. 35-45.
24 Komma, J., Bloschl, G., and Reszler, C. (2008). “Soil moisture updating by Ensemble Kalman Filtering in real-time flood forecasting.” Journal of Hydrology, Vol. 357, pp. 228-242.   DOI
25 Liu, N., and Oliver, D.S. (2005). “Ensemble Kalman filter for automatic history matching of geologic facies.” Journal of Petroleum Science and Engineering, Vol. 47, pp. 147-161.   DOI
26 Neal, J.C., Atkinson, P.M., and Hutton, C.W. (2007). “Flood inundation model updating using an ensemble Kalman filter and spatially distributed measurements.” Journal of Hydrology, Vol. 336, pp. 401-415.   DOI
27 Reszler, C., Komma, J., Bloschl, G., and Gutknecht, D. (2006). “An approach to identifying spatially distributed runoff models for flood forecasting.” Hydrology and Wasserbewirtschaftung, Vol. 50, No. 5, pp. 220-232.