Browse > Article
http://dx.doi.org/10.3741/JKWRA.2010.43.11.933

Uncertainty Analysis of Spatial Distribution of Probability Rainfall: Comparison of CEM and SGS Methods  

Seo, Young-Min (Department of Civil Engineering, Yeungnam Univ.)
Yeo, Woon-Ki (Department of Civil Engineering, Yeungnam Univ.)
Lee, Seung-Yoon (K-water Institute)
Jee, Hong-Kee (Department of Civil Engineering, Yeungnam Univ.)
Publication Information
Journal of Korea Water Resources Association / v.43, no.11, 2010 , pp. 933-944 More about this Journal
Abstract
This study compares the CEM and SGS methods which are geostatistical stochastic simulation methods for assessing the uncertainty by spatial variability in the estimation of the spatial distribution of probability rainfall. In the stochastic simulations using CEM and SGS, two methods show almost similar results for the reproduction of spatial correlation structure, the statistics (standard deviation, coefficient of variation, interquartile range, and range) of realizations as uncertainty measures, and the uncertainty distribution of basin mean rainfall. However, the CEM is superior to SGS in aspect of simulation efficiency.
Keywords
probability rainfall; spatial distribution; uncertainty; SGS; CEM;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Stoelinga, M.T., Hobbs, P.V., Mass, C.F., Locatelli, J.D., Colle, B.A., Houze, R.A.J., Rangno, A.L., Bond, N.A., Smull, B.F., Rasmussen, R.M., Thompson, G., and Colman, B.R. (2003). "Improvement of microphysical parameterization through observational verification experiment." Bulletin of the American Meteorological Society, Vol 84, pp. 1807-1813.   DOI
2 Vann, J., Bertoli, O., and Jackson, S. (2002). "An overview of geostatistical simulation for quantifying risk." Proceedings of the Geostatistical Association of Australasia Symposium: Quantifying Risk and Error, Perth, Western Australia, pp. 13-28.
3 Webster, R., and Oliver, M.A. (2007). Geostatistics for environmental scientists. 2nd Edition, John Wiley & Sons, Ltd.
4 Westrick, K.J., Mass, C.F., and Colle, B.A. (1999). "The limitations of the WSR-88D radar network for quantitative precipitation measurement over the coastal western United States." Bulletin of the American Meteorological Society, Vol. 80, pp. 2289-2298.   DOI
5 Young, C.B., Nelson, B.R., Bradley, A.A., Smith, J.A., Peters-Lidard, C.D., Kruger, A., and Baeck, M.L. (1999). "An evaluation of NEXRAD precipitation estimates in complex terrain." Journal of Geophysical Research, Vol. 104, No. D16, pp. 19691-19703.   DOI
6 Zimmerman, D.L. (1989). "Computationally exploitable structure of covariance matrices and generalized covariance matrices in spatial models." Journal of Statistical Computation and Simulation, Vol. 32, pp. 1-15.   DOI
7 Dinku, T., Anagnostou, M., and Borga, M. (2002). "Improving radar-based estimation of rainfall over complex terrain." Journal of Applied Meteorology, Vol. 41, pp. 1163-1178.   DOI
8 Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Oxford University Press, New York, p. 496.
9 Haberlandt, U., and Gattke, C. (2004). "Spatial interpolation vs. simulation of precipitation for rainfall-runoff modelling-a case study in the Lippe river basin." Proceedings of the British Hydrological Society International Conference: Hydrology: Science and Practice for the 21st Century, London, Vol. 1, pp. 120-127.
10 Haberlandt, U. (2007). "Geostatistical interpolation of hourly precipitation from rain gauge and radar for a large-scale extreme rainfall event." Journal of Hydrology, Vol. 332, pp. 144-157.   DOI
11 Hengl, T. (2009). A practical guide to geostatistical mapping. 2nd Edition, University of Amsterdam.
12 Kanevski, M. (2008). Advanced mapping of environmental data: geostatistics, machine learning and Bayesian maximum entropy. John Wiley & Sons, Inc.
13 Kozintsev, B. (1999). Computations with Gaussian random fields. Ph.D. dissertation, University of Maryland, College Park, MD, USA, p. 33.
14 Nott, D.J., and Wilson, R.J. (1997). "Parameter estimation for excursion set texture models." Signal Processing, Vol. 63, pp. 199-210.   DOI
15 Schultz, D.M., Steenburgh, W.J., Trapp, R.J., Horel, J., Kingsmill, D.E., Dunn, L.B., Rust, W.D., Cheng, L., Bansemer, A., Cox, J., Daugherty, J., Jorgensen, D.P., Meitin, J., Showell, L., Smull, B.F, Tarp, K., and Trainor, M. (2002). "Understanding Utah winter storms-The international precipitation experiment." Bulletin of the American Meteorological Society, Vol. 83, pp. 189-199.   DOI
16 Deutsch, C.V., and Journel, A.G. (1997). GSLIB: Geostatistical software library and user's guide. 2nd Edition, Oxford University Press, New York.
17 서영민, 여운기, 이승윤, 지홍기(2010). "확률강우량의 공간분포 추정을 위한 KED 기법의 적용." 한국수자원학 회논문집, 한국수자원학회, 제43권, 제8호, pp. 757-767.   과학기술학회마을   DOI
18 Casta, A.C., Durao, R., Pereira, M.J., and Soares, A. (2008). "Using stochastic space-time models to map extreme precipitation in southern Portugal." Natural Hazards and Earth System Sciences, Vol. 8, pp. 763-773.   DOI
19 Colle, B.A., Mass, C.F., and Westrick, K.J. (2000). "MM5 precipitation verification over the Pacific Northwest during the 1997-99 cool seasons." Weather and Forecasting, Vol. 15, pp. 730-744.   DOI
20 Dietrich, C., and Newsam, G. (1997). "Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance matrix." SIAM Journal of Scientific Computation, Vol. 18, No. 4, pp. 1088-1107.   DOI