Browse > Article
http://dx.doi.org/10.3741/JKWRA.2005.38.12.1039

Hydrologic Utilization of Radar-Derived Rainfall (I) Optimal Radar Rainfall Estimation  

Bae Deg-Hyo (Water Resources Institute, Dept. of Civil & Envirn. Engrg., Sejong University)
Kim Jin-Hoon (Dept. of Civil & Envirn. Engrg., Sejong University)
Yoon Seong-Sim (Dept. of Civil & Envirn. Engrg., Sejong University)
Publication Information
Journal of Korea Water Resources Association / v.38, no.12, 2005 , pp. 1039-1049 More about this Journal
Abstract
The objective of this study is to produce optimal radar-derived rainfall for hydrologic utilization. The ground clutter and beam blockage effects from Mt. Kwanak station (E.L 608m) are removed from radar reflectivities by POD analysis. The reflectivities are used to produce radar rainfall data in the form of rain rates (mm/h) by the application of the Marshall-Palmer reflectivity versus rainfall relationship. However, these radar-derived rainfall are underestimated in temporal and spatial scale compared with observed one, so it is necessary to hire a correction scheme based on the gauge-to-radar (G/R) statistical adjustment technique. The selected watershed for studying the real-time correction of radar-rainfall estimation is the Soyang dam site, which is located approximately 100km east of Kwanak radar station. The results indicate that adjusted radar rainfall with the gauge measurement have reasonal G/R ratio ranged on 0.95-1.32 and less uncertainty with that mean standard deviation of G/R ratio are decreased by $9-28\%$. Mean areal precipitation from adjusted radar rainfall are well agreed to the observed one on the Soyang River watershed. It is concluded that the real-time bias adjustment scheme is useful to estimate accurate basin-based radar rainfall for hydrologic application.
Keywords
radar rainfall; POD analysis; Z-R relationship; bias adjustment; Mt. Kwanak radar;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 정재성, 이재형 (1996). '기상레이더 자료를 이용한 시우량곡면 예측.' 한국수자원학회논문집, 한국수자원학회, 제29권, 제3호, pp. 187-195   과학기술학회마을
2 엄원근 (1995). 레이더 기상학, 영재사
3 이경도, 김진훈, 배덕효 (2004). '레이더 추정강수의 수문학적 적용성 검토에 관한 연구.' 대한토목학회 정기학술대회 논문집, 대한토목학회, pp. 775-780
4 Skahill, B. E., 최우희, 김민환, 김성균, Johnson, L. E. (2003). '기상레이더와 지형정보시스템을 이용한 분포형 강우-유출 유역모형의 개발과 검정.' 한국수자원학회논문집, 한국수자원학회, 제36권, 제2호, pp. 285-300   과학기술학회마을   DOI   ScienceOn
5 김진훈, 이경도, 배덕효 (2005). '레이더 추정강우의 수문학적 활용: (II) 불확실성 해석.' 한국수자원학회논문집, 한국수자원학회, 제38권, 제12호, pp. 1051-1060   과학기술학회마을   DOI   ScienceOn
6 김효경, 이동인, 유철환, 권원태 (2002). 'WPMM 방법을 이용한 레이더 강수량 추정: 1. 1998년 여름철 관악산 DWSR-88C를 위한 $Z_{e}-R$ 관계식 산출.' 한국수자원학회논문집, 한국수자원학회, 제35권, 제1호, pp. 25-36   과학기술학회마을   DOI   ScienceOn
7 남경엽, 송병현, 서은경, 최지혜, 이정석, 남재철 (2003). '청주부근에서 발생한 여름철 강우의 레이더-지상가우량계 관계에 관한 연구.' 한국기상학회지, 한국기상학회, 제39권, 제4호, pp. 431-440
8 안상진, 김진극 (2003). '레이더 반사강도와 강우강도의 Z-R 관계식 산정.' 한국수자원학회논문집, 한국수자원학회, 제36권, 제1호, pp. 13-21   과학기술학회마을   DOI   ScienceOn
9 기상연구소 (1995). 레이더를 이용한 유역강우 산정기법 연구(I), 연구보고서, 113p
10 기상연구소 (1996). 레이더를 이용한 유역강우 산정기법 연구(II), 연구보고서, 133p
11 기상연구소 (1989). 레이다 에코로 계산된 강우량의 정확도 평가 연구. 연구보고서, 63p
12 Carpenter, T. M, Georgakakos, K. P., and Sperfslage, J. A. (2001). 'On the parametric and NEXRAD-radar sensitivities of a distributed hydrologic model suitable for operational use.' Jounal of Hydrology, Vol. 254, pp. 169-193   DOI   ScienceOn
13 기상연구소 (1990). 레이다를 이용한 단시간 강우예측결과의 정성 및 정량적인 평가(I). 연구보고서, 101p
14 Wilson, J. W. (1963). 'Relationship between gage-measured precipitation rates and radar echo intensities.' Proc. 10th Weather Radar Conf., Boston, pp. 241-246
15 Woodley, W. L., Olsen, A. R., Herndon, A., and Wiggert, V. (1975). 'Comparison of gage and radar methods of convective rain measurement.' J. Appl. Meteor., Vol. 14, pp. 909-928   DOI
16 Rosenfeld, D., Wolff, B. D. Atlas, D. (1993). 'General probability-matched relations between radar reflectivity and rain rate.' Journal of Appl. Meteor., Vol. 32, pp.50-72   DOI
17 Rosenfeld, D., Amitai, E., and Wolff, B. D. (1995). 'Classification of rain regimes by the three-dimensional properties of reflectivity fields.' J. Appl. Meteor., Vol. 34, pp. 198-211   DOI   ScienceOn
18 Marshall, J. S., and Palmer, W. Mc. (1948). 'The distribution of raindrops with size.' Journal of Atmos. Sci.,, Vol. 5, pp. 165-166   DOI
19 Probert-Jones, J. R. (1960). 'The analysis of Doppler radar echoes from precipitation.' Proceeding Eighth Wea. Radar Conf., pp. 377-385
20 Georgakakos, K. P., Sperfslage, J. A., Tsintikidis, D., and Carpenter, T. M. (1999). Design and Tests of an Integrated Hydrometeorological Forecast System for the Operational Estimation and Forecasting of Rainfall and Streamflow in the Mountainous Panama Canal Watershed, HRC Technical Report No. 2, 143p
21 Carpenter, T. M, and Georgakakos, K. P. (2004). 'Impacts of Parametric and radar rainfall uncertainty on the ensemble streamflow simulation of a distributed hydrologic model.' Jounal of Hydrology, Vol. 298, pp. 202-221   DOI   ScienceOn
22 Anagnostou, E. N., Krajewski, W. F., Seo, D.-J., and Johnson, E. R. (1998). 'Mean field rainfall bias studies for WSR-88D.' ASCE Journal of Hydrologic Engineering, Vol. 3(3), pp. 149-159   DOI   ScienceOn
23 Calheiros, R., and V. Zawadzki, I. (1987). 'Reflectivity-rainrate relationships for radar hydrology in Brazil', Journal of Climate and Appl. Meteor., Vol. 26, pp. 118-132   DOI
24 Barnston, A. G., and Thomas, J. L. (1983). 'Rainfall measurement accuracy in FACE: A comparison of gage and radar rainfalls.' J. Climate Appl. Meteor., Vol. 22(12), pp. 2038-2052   DOI
25 Brandes, E.A. (1974). Radar rainfall pattern optimizing technique, NOAA Tech. Memo. ERL NSSL-67, 16p