Browse > Article

지면-대기 상호작용과 장기유출모의  

Kim, Dae-Ha (전북대학교)
Publication Information
Water for future / v.54, no.6, 2021 , pp. 58-62 More about this Journal
Keywords
Citations & Related Records
연도 인용수 순위
  • Reference
1 Szilagyi, J., and Schepers, A. (2014). "Coupled heat and vapor transport: The thermostat effect of a freely evaporating land surface." Geophysical Research Letters, Vol. 41, pp. 435- 441.   DOI
2 Assouline, S., Li, D., Tyler, S., Tanny, J., Cohen, S., Bou-Zeid, E., Parlange, M., and Katul, G. G. (2016). "On the variability of the Priestley-Taylor coefficient over water bodies." Water Resources Research, Vol. 52, pp. 150-163.   DOI
3 Bouchet, R.J. (1963). "Evapotranspiration reelle et potentielle, signification climatique." International Association of Scientific Hydrology Publication, Vol. 62, pp. 134-142.
4 Brutsaert, W., and Stricker, H. (1979). "An advection aridity approach to estimate actual regional evaporation." Water Resources Research, Vol. 15, pp. 443-450.   DOI
5 Hobbins, M.T., Wood, A., McEvoy, D.J., Huntington, J.L., Morton, C., Anderson, M., and Hain, C. (2016). "The Evaporative Demand Drought Index: Part I-Linking drought evolution to variations in evaporative demand." Journal of Hydrometeorology, Vol. 17, pp. 1745-1761.   DOI
6 Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andreassian, V., Anctil, F., and Loumagne,C. (2005). "Which potential evapotranspiration input for a lumped rainfall-runoff model? - Part 2 - Towards a simple and efficient potential evapotranspiration model for rainfall-runoff modelling." Journal of Hydrology, Vol. 303, pp. 290-306.   DOI
7 Pool, S., Vis, M. & Seibert, J. (2018) "Evaluating model performance: towards a nonparametric variant of the Kling-Gupta efficiency." Hydrological Sciences Journal, Vol. 63, pp. 1941-1953.   DOI
8 Brutsaert, W. (2015). "A generalized complementary principle with physical constraints for land-surface evaporation." Water Resources Research, Vol. 51, pp. 8087-8093.   DOI
9 Priestley, C.H., and Taylor, R.J. (1972). "On the assessment of surface heat flux and evaporation using large-scale parameters." Monthly Weather Review, Vol. 100, pp. 81-92.   DOI
10 Anayah, F.M., and J.J. Kaluarachchi (2014). "Improving the complementary methods to estimate evapotranspiration under diverse climatic and physical conditions." Hydrology and Earth System Sciences, Vol. 18, pp. 2049-2064.   DOI
11 Monteith, J.L. (1965). "Evaporation and the Environment." 19th Symposia of the Society for Experimental Biology, Vol. 19, pp. 205-234.
12 Szilagyi, J., Crago, R. Qualls, R. (2017). "A calibration-free formulation of the complementary relationship of evaporation for continental-scale hydrology." Journal of Geophysical Research: Atmospheres, Vol. 122, pp. 264-278.   DOI
13 Zhou, S., Williams, A. P., Berg, A. M., Cook, B. I., Zhang, Y., Hagemann, S., Lorenz, R., Seneviratne, S. I., and Gentine, P. (2019). "Land-atmosphere feedbacks exacerbate concurrent soil drought and atmospheric aridity." Proceedings of the National Academy of Sciences of the United States of America, Vol. 116, pp. 18848-18853.   DOI
14 Morton, F.I. (1983). "Operational estimates of areal evapotranspiration and their significance to the science and practice of hydrology." Journal of Hydrology, Vol. 66, pp. 1-76.   DOI
15 Penman, H.L. (1948). "Natural evaporation from open water, bare soil and grass." Proceedings of the Royal Society London A, Vol. 194, No. S. pp. 120-145.