Browse > Article
http://dx.doi.org/10.11001/jksww.2018.32.2.123

Comparison of 2,4,6-tribromophenol removal using in-situ liquid ferrate(VI) and stable ferrate(VI)  

Laksono, Fajar Budi (Interdisiplinary Program of Marine Convergence Design, Pukyong National University)
Jung, Sun-Young (Department of Environmental Engineering, Pukyong National University)
Kim, Il-Kyu (Department of Environmental Engineering, Pukyong National University)
Publication Information
Journal of Korean Society of Water and Wastewater / v.32, no.2, 2018 , pp. 123-130 More about this Journal
Abstract
This paper provided the information related to the removal of 2,4,6-tribromophenol using in-situ and stable liquid ferrates(VI). This research's goal was to observe the differences of oxidation power between in-situ liquid ferrate(VI) and stable liquid ferrate(VI). The in-situ liquid ferrate(VI) ($FeO_4{^{2-}}$) has been successfully produced with the concentration 42,000 ppm (Fe) after 11 minutes of reaction time. The stable liquid ferrate(VI) was also successfully produced following the modification method by Sharma with the produced concentrations 7,000 ppm. The stable liquid ferrate(VI) was stable for 44 days and slightly decreased afterwards. This research has been carried out using 2,4,6-tribromophenol as the representative compound. Both of ferrates(VI) have the highest oxidation capability at the neutral condition. Furthermore, the stable liquid ferrate(VI) has higher oxidation power than the in-situ liquid ferrate(VI).
Keywords
Wet oxidation method; Liquid ferrate(VI); GC-ECD; GC-FID;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Meerts, I. a, van Zanden, J. J., Luijks, E. a, van Leeuwen-Bol, I., Marsh, G., Jakobsson, E., Bergman, a, and Brouwer, a. (2000). Potent competitive interactions of some brominated flame retardants and related compounds with human transthyretin in vitro, Toxicol. Sci., 56, 95-104.   DOI
2 Pedersen, M., Saenger, P., and Fries, L. (1974). Simple brominated phenols in red algae, Phytochem. 13(10), 2273-2279.
3 Rios, J.C., Repetto, G., Jos, a., del Peso, a., Salguero, M., Camean, a., Repetto, M., Rios, J. C., and Camean, A. (2003). Tribromophenol induces the differentiation of SH-SY5Y human neuroblastoma cells in vitro, Toxicol. Vitro, 17(5-6), 635-641.   DOI
4 Arnold, W.A., and Roberts, A.L. (2000). Pathways and kinetics of chlorinated ethylene and chlorinated acetylene reaction with Fe (0) particles, Environ. Sci. Technol., 34(9), 1794-1805.   DOI
5 Rush, J.D., Zhao, Z., and Bielski, B.H.J. (1996). Reaction of Ferrate (VI)/Ferrate (V) with Hydrogen Peroxide and Superoxide Anion - a Stopped-Flow and Premix Pulse Radiolysis Study, Free. Radic. Res., 24(3), 187-198.   DOI
6 Sharma, V.K., and Bielski, B.H.J. (1991). Reactivity of ferrate(VI) and ferrate(V) with amino acids, Inorg. Chem., 30(23), 4306-4310.   DOI
7 Sharma, V.K., Rendon, R.a., Millero, F.J., and Vazquez, F. G. (2000). Oxidation of thioacetamide by ferrate(VI), Mar. Chem., 70(1-3), 235-242.   DOI
8 Sharma, V.K. (2002). Potassium ferrate(VI): An environmentally friendly oxidant, Adv. Environ. Res., 6, 143-156.   DOI
9 Sharma, V.K., Burnett, C.R., and Millero, F.J. (2001). Dissociation constants of the monoprotic ferrate(VI) ion in NaCl media, Phys. Chem. Chem. Phys., 3(11), 2059-2062.   DOI
10 Sharma, V. K. (2010). Oxidation of inorganic compounds by ferrate(VI) and ferrate(V): One-electron and two-electron transfer steps, Environ. Sci. Technol., 44, 5148-5152   DOI
11 Sharma, V.K. (2011). Oxidation of inorganic contaminants by ferrates (VI, V, and IV)-kinetics and mechanisms: A review. J. Environ. Manage., Elsevier Ltd, 92(4), 1051-1073.   DOI
12 Sharma, V.K. (2013). Ferrate(VI) and ferrate(V) oxidation of organic compounds: Kinetics and mechanism, Coord. Chem. Rev., Elsevier B.V., 257(2), 495-510.   DOI
13 Sharma, V.K. (2015). Apparatus and method for producing liquid ferrate, Google Patents.
14 Svanks, K. (1976). Oxidation of Ammonia in Water by Ferrates (VI) and (IV), Ohio State University, Water Resources Center.
15 Wagner, W.F., Gump, J.R., and Hart, E.N. (1952). Factors Affecting Stability of Aqueous Potassium Ferrate(VI) Solutions, Anal. Chem., American Chemical Society, 24(9), 1497-1498.   DOI
16 Yang, B., Ying, G.G., Zhang, L.J., Zhou, L.J., Liu, S., and Fang, Y.X. (2011). Kinetics modeling and reaction mechanism of ferrate(VI) oxidation of benzotriazoles, Water Res., 45(6), 2261-2269.   DOI
17 Yang, B., Ying, G.G., Chen, Z.F., Zhao, J.L., Peng, F.Q., and Chen, X.W. (2014). Ferrate(VI) oxidation of tetrabromobisphenol A in comparison with bisphenol A, Water Res., Elsevier Ltd, 62(Vi), 211-219.   DOI
18 Yu, M., Park, G., and Kim, H.O. (2008). (n.d.). Oxidation of Nonylphenol Using Ferrate, ACS symposium series, Oxford University Press, 985, 389-403.
19 Dell'Erba, A., Falsanisi, D., Liberti, L., Notarnicola, M. and Santoro, D. (2007). Disinfection by-products formation during wastewater disinfection with peracetic acid, Desalination, 215(1-3), 177-186.   DOI
20 Ashworth, R.B., and Cormier, M.J. (1967). Isolation of 2,6-dibromophenol from the marine hemichordate, Balanoglossus biminiensis, Sci. Rep., (New York, N.Y.), 155(3769), 1558-1559.
21 Evans, C.S., and Dellinger, B. (2005). Mechanisms of dioxin formation from the high-temperature oxidation of 2-bromophenol, Environ. Sci. Technol., 39(7), 2128-2134.   DOI
22 Fielman, K.T., Woodin, S.A., Walla, M.D., and Lincoln, D.E. (1999). Widespread occurrence of natural halogenated organics among temperate marine infauna, Mar. Ecol. Prog. Ser., 181, 1-12.   DOI
23 Gao, B., Liu, J., Liu, F., and Yang, F. (2013). Photocatalytic degradation of 2,4,6-tribromophenol over Fe-doped Znln2S4: stable activity and enhanced debromination, Appl. Catal. B - Environ., 129, 89-97.   DOI
24 Graham, N., Jiang, C.C., Li, X.Z., Jiang, J.Q., and Ma, J. (2004). The influence of pH on the degradation of phenol and chlorophenols by potassium ferrate, Chemosphere, 56(10), 949-956.   DOI
25 Jiang, J., and Lloyd, B. (2002). Progress in the development and use of ferrate (VI) salt as an oxidant and coagulant for water and wastewater treatment, Water Res., 36, 1397-1408.   DOI
26 Gutierrez, M., Becerra, J., Godoy, J., and Barra, R. (2005). Occupational and environmental exposure to tribromophenol used for wood surface protection in sawmills, Int. J. Environ. Health Res., Taylor & Francis, 15(3), 171-179.   DOI
27 Huang, H., Sommerfeld, D., Dunn, B.C., Eyring, E.M., and Lloyd, C.R. (2001). Ferrate (VI) oxidation of aqueous phenol: kinetics and mechanism, J. Phys. Chem. A, 105(14), 3536-3541.   DOI
28 Jeong, H.Y., Kim, H., and Hayes, K.F. (2007). Reductive dechlorination pathways of tetrachloroethylene and trichloroethylene and subsequent transformation of their dechlorination products by mackinawite (FeS) in the presence of metals, Environ. Sci. Technol., 41(22), 7736-7743.   DOI
29 Jiang, J.Q. (2007). Research progress in the use of ferrate(VI) for the environmental remediation, J. Hazard. Mater., 146(3), 617-623.   DOI
30 Jiang, J.Q. (2014). Advances in the development and application of ferrate(VI) for water and wastewater treatment, J. Chem. Technol. Biotechnol., 89(2), 165-177.   DOI
31 King, G.M. (1986). Inhibition of microbial activity in marine sediments by a bromophenol from a hemichordate, Nature, 323(6085), 257-259.   DOI
32 King, G.M. (1988). Dehalogenation in marine sediments containing natural sources of halophenols, Appl. Environ. Microbiol., 54(12), 3079-3085.
33 Laksono, F. and Kim, I.K. (2017). Study on 4-bromophenol degradation using wet oxidation in-situ liquid ferrate(VI) in the aqueous phase, Desalination, Water Treat., 58, 391-398.   DOI
34 Macova, Z., Bouzek, K., Hives, J., Sharma, V.K., Terryn, R.J., and Baum, J.C. (2009). Research progress in the electrochemical synthesis of ferrate(VI), Electrochim. Acta, 54(10), 2673-2683.   DOI
35 Lee, Y., Cho, M., Kim, J.Y., and Yoon, J. (2004). Chemistry of ferrate (Fe (VI)) in aqueous solution and its applications as a green chemical, J. Ind. Eng. Chem., 10(1), 161-171.
36 Li, C., Li, X. Z., and Graham, N. (2005). A study of the preparation and reactivity of potassium ferrate, Chemosphere, 61(4), 537-543.   DOI
37 Li, Z., Yoshida, N., Wang, A., Nan, J., Liang, B., Zhang, C., Zhang, D., Suzuki, D., Zhou, X., Xiao, Z., and Katayama, A. (2015). Anaerobic mineralization of 2,4,6-tribromophenol to $CO_2$ by a synthetic microbial community comprising clostridium, dehalobacter, and desulfatiglans, Bioresour. Technol., 176, 225-232.   DOI