Browse > Article
http://dx.doi.org/10.5762/KAIS.2020.21.6.527

The Effects of Polyampholyte on Vitrification Process for cryopreservation of Bovine Oviduct Epithelial Cell  

Kim, Sung Woo (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA)
Lee, Jae-Yeong (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA)
Kim, Chan-Lan (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA)
Yu, Yeonhee (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA)
Lee, Sung Soo (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA)
Ko, Yeoung-Gyu (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.21, no.6, 2020 , pp. 527-535 More about this Journal
Abstract
The purpose of this study was to establish a simple vitrification protocols to preserve animal cell lines derived from tissues of livestock that could be recultured. Bovine oviduct epithelial cells (BOEC) were used for the vitrification process using a 0.25 ml straw to increase cryopreservation efficiency. BOEC was cultured from the oviduct of 3.5-day estrus state, and the commercially available polyampholyte StemCell KeepTM was used as a cryoprotective agent. Using different concentrations, the viability rates of BOEC in 5, 10, 25, 50, 75, and 100% in freezing media were investigated. Survivability was determined using a differential staining technique using a trypan blue test and a CYTO-13/PI staining protocol. The viability rates of BOEC in the trypan blue test were 5.6±11.8, 12.5±7.2, 53.0±2.7, 85.1±6.9, 79.8±0.6, and 60.7±6.7% with a respective concentration of StemCell KeepTM. The viability rates in CYTO-13/PI staining were 4.6±2.5, 30.8±12.1, 58.4±2.5, 85.5±1.2, 79.8±0.6, and 71.2±1.2%, respectively. These results indicate that BOEC could be preserved with StemCell KeepTM without toxicity in a 0.25-ml straw. The optimal concentration of vitrification solution with StemCell KeepTM was determined to be 50% and can be considered as a proper preservation method for cryobanking.
Keywords
Polyampholyte; Bovine Oviduct Epithelial Cell; Animal Genetic Resources; Freezing; Vitrification;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. Bowey-Dellinger, L. Dixon, K. Ackerman, C. Vigueira, Y. K. Suh, T. Lyda, K. Sapp, M. Grider, D. Crater, T. Russell, M. Elias, V. Mc. Coffield, V. A. Segarra, "Introducing mammalian cell culture and cell viability techniques in the undergraduate biology laboratory", J. Microbiol. Biol. Educ., Vol.18, No.2, pp.1-7, August 2017. DOI: https://doi.org/10.1128/jmbe.v18i2.1264
2 J. G. Baust, D. Gao, J. M. Baust, "Cryopreservation An emerging paradigm change", Organogenesis, Vol.5, No.3, pp.90-96, September 2009. DOI: https://doi.org/10.4161/org.5.3.10021   DOI
3 N. Kotobuki, M. Hirose, H. Machida, Y. Katou, K. Muraki, Y. Takakura, H. Ohgushi, "Viability and osteogenic potential of cryopreserved human bone marrow-derived mesenchymal cells", Tissue Eng., Vol.11, No.5-6, pp.663-673, May-Jun 2005. DOI: https://doi.org/10.1089/ten.2005.11.663   DOI
4 J-E. Oh, K. Karlmark Raja, J-H. Shin, A. Pollak, M. Hengstschlager, G. Lubec, "Cytoskeleton changes following differentiation of N1E-115 neuroblastoma cell line.", Amino Acids, Vol.31, No.3, pp.289-298, October 2006. DOI: https://doi.org/10.1007/s00726-005-0256-z   DOI
5 C. J. Hunt. "Cryopreservation: vitrification and controlled rate cooling.", Methods Mol. Biol., Vol.1590, No.3, pp.41-77, March 2017. DOI: https://doi.org/10.1007/978-1-4939-6921-0_5   DOI
6 G. M. Fahy, D. R. MacFarlane, C. A. Angell, H. T. Meryman, "Vitrification as an approach to cryopreservation." Cryobiology, Vol.21, No.4, pp.407-426, August 1984. DOI: https://doi.org/10.1016/0011-2240(84)90079-8   DOI
7 K. R. Fowke, J. Behnke, C. Hanson, K, Shea, LM. C. Cosentino, "Apoptosis: a method for evaluating the cryopreservation of whole blood and peripheral blood mononuclear cells." J. Immunol. Methods., Vol.244, No.1-2, pp.136-144, October 2000. DOI: https://doi.org/10.1016/s0022-1759(00)00263-5
8 J. Yang, N. Diaz, J. Adelsberger, X, Zhou, R. Stevens, A. Rupert, J. A. Metcalf, M. Baseler, C. Barbon, T. Imamichi, R. Lempicki, L. M. Cosentino, "The effects of storage temperature on PBMC gene expression", BMC Immunol., Vol.17, No.6, March 2016. DOI: https://doi.org/10.1186/s12865-016-0144-1
9 T. H. Jang, S. C. Park, J. H. Yang, J. Y. Kim, J. H. Seok, U. S. Park, C. W. Choi, S. R. Lee, J. Han, "Cryopreservation and its clinical applications", Integr. Med. Res., Vol.6, No.1, pp.12-18, March 2017. DOI: https://doi.org/10.1016/j.imr.2016.12.001   DOI
10 N. Taghizabet, M. A. Khalili, F. Anbari, A. Agha-Rahimi, S. A. Nottola, G. Macchiarelli, M. G. Palmerini, "Human cumulus cell sensitivity to vitrification, an ultrastructural study", Zygote, Vol.26, No.3, pp.224-231, Jun 2018. DOI: https://doi.org/10.1017/S0967199418000138   DOI
11 P. Mazur, "Cryobiology: The freezing of biological systems", Science, Vol.168, No.3934, pp.939-949, May 1970. DOI: https://www.jstor.org/stable/1729310   DOI
12 D. Gao, J. K. Critser, "Mechanisms of cryoinjury in living cells", ILAR J., Vol.41, No.4, pp.187-196, October 2000. DOI: https://doi.org/10.1093/ilar.41.4.187   DOI
13 K. Matsumura, J. Y. Bae, S. H. Hyon, "Polyampholytes as cryoprotective agents for mammalian cell cryopreservation", Cell Transplantation, Vol.19, No.6, pp.691-699, Jun 2010. DOI: https://doi.org/10.3727/096368910X508780   DOI
14 H. J. Kim, J. H. Lee, Y. B. Hur, C. W. Lee, S-H. Park, B-W. Koo. "Marine antifreeze proteins: structure, function, and application to cryopreservation as a potential Cryoprotectant", Mar. Drugs, Vol.15, No.2, Article 27, Febuary 2017. DOI: https://doi.org/10.3390/md15020027
15 R. Gupta, R. Deswal, "Antifreeze proteins enable plants to survive in freezing conditions", J. Boisci., Vol.39, No.5, pp.931-944, December 2014. DOI: https://doi.org/10.1007/s12038-014-9468-2   DOI
16 R. Surís-Valls, I. K. Voets, "Peptidic antifreeze materials: prospects and challenges", Int. J. Mol. Sci., Vol.20, No.20, Article 5149, October 2019. DOI: https://doi.org/10.3390/ijms20205149
17 C. Polge, A. U. Smith, A. S. Parkes, "Revival of spermatozoa after vitrification and dehydration at low temperatures." Nature, Vol.164, pp.666, October 1949. DOI: https://doi.org/10.1038/164666a0   DOI
18 K. Matsumura, K. Kawamoto, M. Takeuchi, S. Yoshimura, D. Tanaka, S. H. Hyon, "Cryopreservation of a two-dimensional monolayer using a slow vitrification method with polyampholyte to inhibit ice crystal formation", ACS Biomater. Sci. Eng., Vol.2, No.6, pp.1023-1029, April 2016. DOI: https://doi.org/10.1021/acsbiomaterials.6b00150   DOI
19 R. C. Deller, M. Vatish, D. A. Mitchell, M. I. Gibson, "Glycerol-free cryopreservation of red blood cells enabled by ice-recrystallization-inhibiting polymers", ACS Biomater. Sci. Eng., Vol.1, No.9, pp.789-794, April 2015. DOI: https://doi.org/10.1021/acsbiomaterials.5b00162   DOI
20 B. D. Bavister, "Role of oviductal secretions in embryonic growth in vivo and in vitro", Theriogenology, Vol.29, No.1, pp.143-154, January 1988. DOI: https://doi.org/10.1016/0093-691X(88)90037-4   DOI
21 J. E. Lovelock, M. W. H. Bishop, "Prevention of freezing effect of antifreeze glycopeptides on membrane potential damage to living cells by dimethyl sulphoxide." Nature, Vol.183, pp.1394-1395, May 1959. DOI: https://doi.org/10.1038/1831394a0   DOI
22 G. S. Jiang, K. H. Bi, T. H. Tang, J. W. Wang, Y. K. Zhang, W. Zhang, H. Q. Ren, H. Q. Bai, Y. S. Wang, "Down-regulation of TRRAP-dependent hTERT and TRRAP-induced CAD activation by Myc/Max contributes to the differentiation of HL60 cells after exposure to DMSO." Int. Immunopharmacol., Vol.6, No.7, pp.1204-1213, August 2006. DOI: https://doi.org/10.1016/j.intimp.2006.02.014   DOI
23 B. R. Chakravarthy, R. Tremblay, P. Macdonald, V. Krsmanovic, J. F. Whitfield, J. P. Durkin, "The activation of inactive membrane-associated protein kinase C is associated with DMSO-induced erythroleukemia cell differentiation." Biochm. Biophys Act ., Vol.1136, No.1, pp.83-90, October 1991. DOI: https://doi.org/10.1016/0167-4889(92)90088-S
24 S. W. Kim, N. Sharma, I-S. Hwang, C. Choe, D. Kim, H-H Seong, D. K. Jeong, "Application of saponin on differential staining examination in animal blastocysts", Ind. J. Anim. Sci., Vol.87, No.9, pp.1081-1086, September 2017. http://epubs.icar.org.in/ejournal/index.php/IJAnS/article/view/74292
25 A. K. Belew, K. Tesfaye, G. Belay, "The state of conservation of animal genetic resources in developing countries: a review", Int. J. Pharm. Med. Biol. Sci., Vol.5, No.1, pp.58-66, Jun 2016. DOI: https://doi.org/10.18178/ijpmbs.5.1.58-66
26 Y. Hoshino, K. Saeki, "Animal cloning by nuclear transfer using samatic cells recovered from organs frozen without cryoprotectant", J. Mamm. Ova Res., Vol.27, No.3, pp.93-100, September 2010. DOI: https://doi.org/10.1274/jmor.27.93   DOI
27 D. N. Wells, "The integration of cloning by nuclear transfer in the conservation of animal genetic resources", F. Farm Animal. Genet. Resours., Vol.30, No.3, pp.223-241, Febuary 2018. DOI: https://doi.org/10.1017/S0263967X0004204X
28 K. H. Campbell, "A background to nuclear transfer and its applications in agriculture and human therapeutic medicine", J. Anat., Vol.200, No.3, pp.267-275, March 2002. DOI: https://doi.org/10.1046/j.1469-7580.2002.00035.x   DOI
29 M. Ankarcrona, J. M. Dypbukt, E. Bonfoco, B. Zhivotovsky, S. Orrenius, S. A. Lipton, P. Nicotera, "Glutamate-induced neuronal death: A Succession of necrosis or apoptosis depending on mitochondrial function." Neuron, Vol.15, No.4, pp.961-973, October 1995. DOI: https://doi.org/10.1016/0896-6273(95)90186-8   DOI