Browse > Article
http://dx.doi.org/10.5762/KAIS.2019.20.8.224

Hormone Analysis during Artificial Estrus Induction in Korean Black Goats  

Kim, Kwan-Woo (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA)
Jeon, Dayeon (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA)
Lee, Jinwook (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA)
Kim, Seungchang (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA)
Lee, Sang-Hoon (Animal Genetic Resources Research Center, National Institute of Animal Science, RDA)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.20, no.8, 2019 , pp. 224-230 More about this Journal
Abstract
The purpose of the study is to investigate the change in the blood progesterone (P4) and estrogen (E2) levels when applying different estrus induction protocols to Korean black goats, and this was done to gain understanding about their reproduction physiology. For the experiment, we performed three estrus induction protocols that are commonly used in bovine: controlled internal drug release (CIDR) + prostaglandin $F2{\alpha}$ ($PGF2{\alpha}$), $PGF2{\alpha}$ + gonadotropin-releasing hormone (GnRH) + $PGF2{\alpha}$, and CIDR + $PGF2{\alpha}$ + PMSG. The P4 and E2 concentrations showed different patterns until the last treatment of the three protocols. However, similar concentration patterns were shown after the last treatment in all the protocols. In conclusion, we monitored the blood P4 and E2 levels in Korean black goats following three different estrus induction protocols. Our findings may be used in other breeding programs of Korean black goats, such as artificial insemination and embryo transfer.
Keywords
Estrogen; Estrus Induction; Hormone Analysis; Korean Black Goat; Progesterone;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 L. L. Mamuad, S. H. Kim, S. S. Lee, K. K. Cho, C. O. Jeon, S. S. Lee. Characterization, metabolites and gas formation of fumarate reducing bacteria isolated from Korean native goat (Capra hircus coreanae). Journal of Microbiology (Seoul, Korea), no. 6, vol. 50, pp. 925-931, 2012. DOI: https://doi.org/10.1007/s12275-012-2497-3   DOI
2 B. Y. Jung, M. G. Seo, S. H. Lee, J. W. Byun, J. K. Oem, D. Kwak. Molecular and serologic detection of Coxiella burnetii in native Korean goats (Capra hircus coreanae ). Veterinary Microbiology, no. 1-2, vol. 173, pp. 152-155, 2014. DOI: https://doi.org/10.1016/j.vetmic.2014.06.029   DOI
3 A. M. Reza, S. Shiwani, N. K. Singh, J. D. Lohakare, S. J. Lee, D. K. Jeong, et al. Keratinocyte growth factor and thiazolidinediones and linolenic acid differentiate characterized mammary fat pad adipose stem cells isolated from prepubertal Korean black goat to epithelial and adipogenic lineage. In Vitro Cellular and Developmental Biology. Animal, no. 3, vol. 50, pp. 194-206, 2014. DOI: https://doi.org/10.1007/s11626-013-9690-5   DOI
4 S. Y. Jang, E. K. Kim, J. H. Park, M. R. Oh, Y. J. Tang, Y. L. Ding, et al. Effects of physically effective neutral detergent fiber content on dry matter intake, digestibility, and chewing activity in Korean native goats (Capra hircus coreanae ) fed with total mixed ration. Asian-Australasian Journal of Animal Sciences, no. 10, vol. 30, pp. 1405-1409. 2017. DOI: https://doi.org/10.5713/ajas.16.0868   DOI
5 A. Bakhsh, I. Ismail, Y. H. Hwang, J. G. Lee, S. T. Joo. Comparison of blood loss and meat quality characteristics in Korean black goat subjected to head-only electrical stunning or without stunning. Korean Journal of Food Science of Animal Resources, no. 6, vol. 38, pp. 1286-1293, 2018. DOI: https://doi.org/10.5851/kosfa.2018.e64   DOI
6 Y. H. Hwang, A. Bakhsh, I. Ismail, J. G. Lee, S. T. Joo. Effects of Intensive Alfalfa Feeding on Meat Quality and Fatty Acid Profile of Korean Native Black Goats. Korean J Food Sci Anim Resour. 38(5):1092-1100. 2018. DOI: https://doi.org/10.5851/kosfa.2018.e42   DOI
7 L. Shi, Y. Ren, H. Zhou, G. Hou, W. Xun, W. Yue, et al. Effect of rapid freezing-thawing techniques on the sperm parameters and ultrastructure of Chinese Taihang black goat spermatozoa. Micron (Oxford, England), vol. 57, pp. 6-12, 2014. DOI: https://doi.org/10.1016/j.micron.2013.09.004   DOI
8 A. Bakhsh, I. Ismail, Y. H. Hwang, J. G. Lee, S. T. Joo. Comparison of Blood Loss and Meat Quality Characteristics in Korean Black Goat Subjected to Head-Only Electrical Stunning or without Stunning. Korean J Food Sci Anim Resour. 38(6):1286-1293. 2018. DOI: https://doi.org/10.5851/kosfa.2018.e64   DOI
9 N. T. Kusina, Tarwirei, H. Hamudikuwanda, G. Agumba, J. Mukwena. A comparison of the effects of progesterone sponges and ear implants, PGF2alpha, and their combination on efficacy of estrus synchronization and fertility of Mashona goat does. Theriogenology, no. 8, vol. 53, pp. 1567-1580, 2000. DOI: https://doi.org/10.1016/s0093-691x(00)00298-3   DOI
10 B. Leboeuf, B. Restall, S. Salamon. Production and storage of goat semen for artificial insemination. Animal Reproduction Science, no. 1-3, vol. 62, pp. 113-141, 2000. DOI: https://doi.org/10.1016/s0378-4320(00)00156-1   DOI
11 H. Baldassarre, C. N. Karatzas. Advanced assisted reproduction technologies (ART) in goats. Animal Reproduction Science, vol. 82-83, pp. 255-266, 2004. DOI: https://doi.org/10.1016/j.anireprosci.2004.04.027   DOI
12 Y. Zhao, J. Zhang, H. Wei, X. Sun, B. Mu, M. Yu, et al. Efficiency of methods applied for goat estrous synchronization in subtropical monsoonal climate zone of Southwest China. Tropical Animal Health and Production, no. 6, vol. 42, 1257-1262, 2010. DOI: https://doi.org/10.1007/s11250-010-9558-6   DOI
13 P. Minoia, G. M. Lacalandra, A. Zarrilli. [Estrus induction in the goat after pulsatile administration of LHFSHRH]. Bollettino della Societa Italiana Biologia Sperimentale, no. 11, vol. 59, pp. 1625-1630, 1983.
14 C. Azevedo, I. Maia, N. Canada, Simoes, J. Comparison of fertility, regular returns-to-estrus, and calving interval between Ovsynch and CO-synch + CIDR protocols in dairy cows. Theriogenology, no. 6, vol. 82, pp. 910-914, 2014. DOI: https://doi.org/10.1016/j.theriogenology.2014.07.006   DOI
15 N. T. Kusina, T. Chinuwo, H. Hamudikuwanda, L. R. Ndlovu, S. Muzanenhamo. Effect of different dietary energy level intakes on efficiency of estrus synchronization and fertility in Mashona goat does. Small Ruminant Research, no. 3, vol. 39, pp. 283-288, 2001. DOI: https://doi.org/10.1016/s0921-4488(00)00192-9   DOI
16 J. R. Pursley, M. O. Mee, M. C. Wiltbank. Synchronization of ovulation in dairy cows using PGF2alpha and GnRH. Theriogenology, no. 7, vol. 44, pp. 915-923, 1995. DOI: https://doi.org/10.1016/0093-691x(95)00279-h   DOI
17 S. W. Kim, S. B. Park, M. J. Kim, D. H. Kim, D. G. Yim. Effects of different levels of concentrate in the diet on physicochemical traits of Korean native black goat meats. Korean Journal for Food Science of Animal Resources, no. 4, vol. 34, pp. 457-463, 2014. DOI: https://doi.org/10.5851/kosfa.2014.34.4.457   DOI
18 W. Holtz, B. Sohnrey, M. Gerland, M. A. Driancourt. Ovsynch synchronization and fixed-time insemination in goats. Theriogenology, no. 7, vol. 69, pp. 785-792, 2008. DOI: https://doi.org/10.1016/j.theriogenology.2007.10.004   DOI
19 H. Miura, S. Kotani, M. Kohiruimaki, H. Ohtsuka, M. Kikuchi, Y. Ohnami. Relationships between the conception rate of estrus synchronization using estradiol benzoate and CIDR (progesterone) and other parameters in holstein lactating dairy cows. The Journal of Reproduction and Development, no. 3, vol. 54, pp. 214-216, 2008. DOI: https://doi.org/10.1262/jrd.18084   DOI
20 S. T. Long, T. Nakao, S. Wakatake, M. Okakoi. Effect of CIDR 12 to 19 days after AI on detection of returning estrus and conception rate in dairy cows. The Journal of Reproduction and Development, no. 2, vol. 56, pp. 251-255, 2010. DOI: https://doi.org/10.1262/jrd.09-134t   DOI
21 C. Stelletta, K. Tekin, M. B. Tirpan, H. Alemdar, B. Cil, F. Oztutar Stelletta, et al. Vulvar thermal pattern following synchronization of estrus is linked to fertility after timed artificial insemination in goat. Theriogenology, vol. 103, pp, 137-142, 2017. DOI: https://doi.org/10.1016/j.theriogenology.2017.07.038   DOI