Browse > Article
http://dx.doi.org/10.5762/KAIS.2018.19.6.27

Evaporation Heat Transfer and Pressure Drop of R-404A at Low Flow Rates in 9.5 mm O.D. Smooth and Microfin Tubes  

Kim, Nae-Hyun (Department of Mechanical Engineering, Incheon National University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.19, no.6, 2018 , pp. 27-36 More about this Journal
Abstract
A significant amount of studies were performed on evaporation heat transfer and pressure drop in microfin tubes. Most studies, however, focused on the refrigerants used in air-conditioners or heat pumps, and very limited information is available on R-404A, which is used in low temperature refrigeration. In this study, the evaporation heat transfer and pressure drop characteristics of R-404A in a 9.5 mm O.D. microfin tube were investigated for the mass flux range from $80kg/m^2s$ and $200kg/m^2s$. A smooth tube of the same outer dimeter was also tested for comparison. The results showed that the heat transfer enhancement ratio of the microfin tube increased with increasing mass flux and the heat flux decreased. The relative contribution of the convective heat transfer and the heat flux on total heat transfer was attributed to the observed trend. The pressure drops of the microfin tube were slightly (maximum 28%) larger than those of the smooth tube. Existing correlations do not adequately predict the measured heat transfer coefficients of pressure drops, probably due to the test range of the present study, which is outside of the existing correlations.
Keywords
Evaporation; Heat transfer; Pressure drop; Microfin tube; R-404A; Mass flux;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Muller-Steinhagen, K. Heck, "A Simple Friction Pressure Drop Correlation for Two-Phase Flow in Pipes," Chem. Eng. Processing, vol. 20, pp. 297-308, 1986. DOI: https://doi.org/10.1016/0255-2701(86)80008-3   DOI
2 D. Jung, R. Radermacher, "Prediction of Pressure Drop During Horizontal Annular Flow Boiling of Pure and Mixed Refrigerants," Int. J. Heat Mass Transfer, vol. 32, no. 12, pp. 2435-2446, 1989. DOI: https://doi.org/10.1016/0017-9310(89)90203-2   DOI
3 J. Moreno Quiben, J. R. Thome, "Flow Pattern Based Two-Phase Frictional Pressure Drop Model for Horizontal Tubes, Part II: New Phenomenological Model," Int. J. Heat Fluid Flow, vol. 28, pp. 1060-1072, 2007. DOI: https://doi.org/10.1016/j.ijheatfluidflow.2007.01.004   DOI
4 C. S. Kuo, C. C. Wang, "Horizontal Flow Boiling of R22 and R407C in a 9.52 mm Micro-Fin Tube," Applied Thermal Eng., vol. 16, no. 8, pp. 719-731, 1996. DOI: https://doi.org/10.1016/1359-4311(95)00076-3   DOI
5 A. Cavallini, D. Del Col, L. Doretti, G. A. Longo, L. Rossetto, "Pressure Drop During Condensation and Vaporization of Refrigerants Inside Enhanced Tubes," Heat and Technology, vol. 15, no. 1, pp. 3-10, 1997.
6 J. Y. Choi, M. A. Kedzierski, P. A. Domanski, "Generalized Pressure Drop Correlation for Evaporation and Condensation in Smooth and Microfin Tubes," Proc. of IIF-IIR Commission B1, Paderborn, Germany, B4, pp. 9-16, 2001.
7 E. P. Bandarra Filho, J. M. Saiz Jabardo, P. E. Lopez Barbieri, "Convective Boiling Pressure Drop of Refrigerant R-134a in Horizontal Smooth and Microfin Tubes", Int. J. Refrig, vol. 27, pp. 895-903, 2004. DOI: https://doi.org/10.1016/j.ijrefrig.2004.04.014   DOI
8 Y. Kim, K. Seo, J. T. Chung, "Evaporation Heat Transfer Characteristics of R-410A in 7.0 and 9.52 mm Smooth/Microfin Tubes," Int. J. Refrig., vol. 25, pp. 716-730, 2002. DOI: https://doi.org/10.1016/S0140-7007(01)00070-6   DOI
9 J. T. Kwon, S. K. Park, M. H. Kim, "Enhanced Effect of a Horizontal Microfin Tube for Condensation Heat Transfer with R-22 and R-410A," J. Enhanced Heat Transfer, Vol. 7, pp. 97-107, 2000. DOI: https://doi.org/10.1615/JEnhHeatTransf.v7.i2.30   DOI
10 A. Padovan, D. Del Col, L. Rossetto, "Experimental Study on Flow Boiling of R134a and R410A in a Horizontal Microfin Tube at High Saturation Temperatures," Applied Thermal Engineering, vol. 31, pp. 2814-3826, 2001.
11 H. Hu, G. Ding, K. Wang, "Heat Transfer Characteristics of R410A-Oil Mixture Flow Boiling Inside a 7mm Straight Microfin Tube, Int. J. Refrig., vol. 31, pp. 1081-1093, 2008. DOI: https://doi.org/10.1016/j.ijrefrig.2007.12.004   DOI
12 S. M. Sami, D. E. Desjardins, "Prediction of Convective Boiling Characteristics of Alternative to R-502 Inside Air/Refrigerant Enhanced Surface Tubing," Applied Thermal Engineering, vol. 20, pp. 579-593, 2000. DOI: https://doi.org/10.1016/S1359-4311(99)00044-7   DOI
13 N.-H. Kim, Personal Communication with Icetro Inc., 2017.
14 L. Doretti, C. Zilio, S. Mancin, A. Cavallini, "Condensation Flow Patterns Inside Plain and Microfin Tubes: A Review," Int. J. Refrig., vol. 36, pp. 567-587, 2013. DOI: https://doi.org/10.1016/j.ijrefrig.2012.10.021   DOI
15 S. G. Kandlikar, "A General Correlation for Two-Phase Boiling Heat Transfer Coefficient Inside Horizontal and Vertical Tubes," J. Heat Transfer, vol. 112, pp. 219-228, 1990. DOI: https://doi.org/10.1115/1.2910348   DOI
16 K. E. Gungor, R. H. S. Winterton, "Simplified General Correlations for Saturated Flow Boiling and Comparisons of Correlations with Data," Can. J. Chem. Eng., vol. 65, no. 1, pp. 148 - 156, 1987.   DOI
17 L. Wojtan, T. Ursenbacher, J. R. Thome, "Investigation of Flow Boiling in Horizontal Tubes: Part II - Development of New Heat Transfer Model for Stratified-Wavy, Dryout and Mist Flow Regimes," Int. J. Heat Mass Transfer, vol. 48, pp. 2970-2985, 2005. DOI: https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.013   DOI
18 S. Koyama, J. Yu, S. Momoki, T. Fujii, H. Honda, "Forced Convective Flow Boiling Heat Transfer of Pure Refrigerants Inside a Horizontal Microfin Tube," Proc. of Engineering Foundation Conference on Convective Flow Boiling, ASME, Banff, Canada, 1995.
19 O. Kido, M. Taniguchi, T. Taira, H. Uehara, "Evaporation Heat Transfer of HCFC22 Inside an Internally Grooved Horizontal Tube," Proc. of ASME/JSME Thermal Engineering Conference, vol. 2, pp. 323-330, 1995.
20 J. R. Thome, N. Kattan, D. Favrat, "Evaporation in micro-fin tubes: A generalized prediction model," Proc. of Convective Flow and Pool Boiling Conf., Kloster Irsee, Paper VII-4, 1977.
21 M. Goto, N. Inoue, N. Ishiwatari, "Condensation and Evaporation Heat Transfer of R-410A Inside Internally Grooved Horizontal Tubes," Int. J. Refrig., vol. 24, pp. 628-638, 2001. DOI: https://doi.org/10.1016/S0140-7007(00)00087-6   DOI
22 M. M. Shah, "Chart Correlation for Saturated Boiling Heat Transfer: Equations and Further Study," ASHRAE Trans, vol. 88, Pt. 1, pp. 185-196, 1982.
23 N.-H. Kim, H.-W. Byun, J.-W. Lee, "Condensation Heat Transfer and Pressure Drop of R-410A in Three 7.0 mm Outer Diameter Microfin Tubes Having Different Inside Geometries," J. Enhanced Heat Transfer, vol. 20, no. 3, 235-250, 2013. DOI: https://doi.org/10.1615/JEnhHeatTransf.2013007609   DOI
24 E. E. Wilson, "A Basis for Rational Design of Heat Transfer Apparatus," Trans. ASME, vol. 37, pp. 47-70, 1915.
25 S. J. Kline, F. A. McClintock, "The Description of Uncertainties in Single Sample Experiments," Mechanical Engineering, vol. 75, pp. 3-9, 1953.
26 J. G. Collier, J. R. Thome, Convective Boiling and Condensation, 3rd ed., Oxford University Press, 1994.
27 T. A. Newell, R. K. Shah, "An Assessment of Refrigerant Heat Transfer, Pressure Drop and Void Fraction Effects in Microfin Tubes," Int. J. HVAC&R, vol. 7, no. 2, pp. 125-153, 2001. DOI: https://doi.org/10.1080/10789669.2001.10391267   DOI
28 R. Yun, Y. Kim, K. Seo, H. Y. Kim, "A Generalized Correlation for Evaporation Heat Transfer of Refrigerants in Microfin Tubes," Int. J. Heat Mass Transfer, vol. 45, pp. 2003-2010, 2002. DOI: https://doi.org/10.1016/S0017-9310(01)00321-0   DOI
29 L. M. Chamra, P. J. Mago, "Modeling of Evaporation Heat Transfer of Pure Refrigerants and Refrigerant Mixtures in Microfin Tubes," Proc. of Institution on Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 221, pp. 443-454, 2007. DOI: https://doi.org/10.1243/0954406JMES131
30 S. M. Zivi, "Estimation of Steady-State Steam Void Fraction by Means of the Principle of Minimum Entropy Production," J. Heat Transfer, vol. 68, pp. 247-252, 1964. DOI: https://doi.org/10.1115/1.3687113
31 L. Friedel, "Improved Pressure Drop Correlations for Horizontal and Vertical Two-Phase Pipe Flow," 3R Int., vol. 18, pp. 485-492, 1979.
32 S. L. Smith, "Void Fraction in Two-Phase Flow: A Correlation Based Upon an Equal Velocity Head Model," Inst. Mech. Eng., vol. 184, pp. 647-657, 1969-1970. DOI: https://doi.org/10.1243/PIME_PROC_1969_184_051_02
33 Z. Rouhani, E. Axelsson, "Calculation of Void Volume Fraction in the Subcooled and Quality Boiling Regions," Int. J. Heat Mass Trans., vol. 13, pp. 383-393, 1970. DOI: https://doi.org/10.1016/0017-9310(70)90114-6   DOI
34 T. A. Newell, R. K. Shah, "An Assessment of Refrigerant Heat Transfer, Pressure Drop and Void Fraction Effects in Microfin Tubes, Int. J. HVAC&R Research, vol. 7, no. 2, pp. 125-153, 2001. DOI: https://doi.org/10.1080/10789669.2001.10391267   DOI
35 K. Yasuda, K. Ohizumi, M. Hori, O. Kawamata, "Development of Condensing Thermofin HEX-C Tube," Hitachi Cable Review, vol. 9, pp. 27-30, 1990.
36 R. L. Webb, N.-H. Kim, Principles of Enhanced Heat Transfer, 2nd ed., Taylor and Francis Pub., 2005.
37 S. Laohalertdecha, A. S. Dalkilic, S. Wongwises, "A Review on Heat Transfer Performance and Pressure Drop Characteristics of Various Enhanced Tubes," Int. J. Air-Cond. Refrig., vol. 20, no. 4, 230003, 2012.
38 J. R. Thome, "Boiling of New Refrigerants: A State-of-the-Art Review," Int. J. Refrig., vol. 19, no. 7, pp. 435-457, 1996. DOI: https://doi.org/10.1016/S0140-7007(96)00004-7   DOI
39 K. Fujie, N. Itoh, H. Kimura, N. Nakayama, T. Yanugidi, Heat Transfer Pipe, US Patent 4044479, assigned to Hitachi Ltd., 1977.
40 Y. Shinohara, M. Tobe, "Development of an Improved Thermofin Tube," Hitachi Cable Review, vol. 4, pp. 47-50, 1985.
41 T. Tsuchida, K. Yasuda, M. Hori, T. Otani, "Internal Heat Transfer Characteristics and Workability of Narrow Thermofin Tubes," Hitachi Cable Review, vol. 12, pp. 97-100, 1993.
42 L. J. Hamilton, M. A. Kedzierski, M. P. Kaul, "Horizontal Convective Boiling of Pure and Mixed Refrigerants Within a Micro-Fin Tube," J. Enhanced Heat Transfer, vol. 15, no. 3, pp. 211-226, 2008. DOI: https://doi.org/10.1615/JEnhHeatTransf.v15.i3.30   DOI