Browse > Article
http://dx.doi.org/10.5762/KAIS.2015.16.7.4704

The increase of blood vessels using a signal during the image acquisition phase T1 shortening effect  

Lee, Ho-Beom (Department of Radiology, Asan Medical Center)
Choi, Kwan-Woo (Department of Radiology, Asan Medical Center)
Son, Soon-Yong (Department of Radiology, Asan Medical Center)
Min, Jung-Whan (Department of Radiology, Shin-Gu University)
Lee, Jong-Seok (Department of Radiotechnology, Wonkwang Health Science University)
Yoo, Beong-Gyu (Department of Radiotechnology, Wonkwang Health Science University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.16, no.7, 2015 , pp. 4704-4710 More about this Journal
Abstract
The purpose of this study is to obtain a useful diagnostic image by increasing the signal strength of the peripheral artery, was to use a T1 shortening effect of gadolinium contrast agents to improve the disadvantages of the phase image. From october to december 2014 thirty patients were underwent the MRI scanning, except for heart disease. Research method was evaluated comparing the image after gadolinium contrast MR image acquisition step before evaluating the difference between the signal intensity for T1 shortening effect. In frontal lobe 19.45%, temporal lobe 23.09%, occipital lobe 25.45%, parietal lobe 18.82%, cerebellum 20.93% after peripheral arterial signal strength results of gadolinium contrast agent injection was increased significantly after injection of gadolinium both statistically significant. After injecting a contrast agent gadolinium in SWI by increasing the signal strength of the T1 shortening effect can be obtained when using the phase image to give a useful image in diagnosis and treatment.
Keywords
T1 shortening effect; Gadolinium; BOLD; Phase image; Susceptibility weighted image; Signal intensity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Gustav A, Johnnes M, Juerg H, Dominik W, Verena B, Christian W, Chris B, Daniel N, "Direct MR Arthrography at 1.5 and 3.0T: Singal Dependence on Gadolinium and Iodine Concentrations-Phantom Study", Radiology, 247(3), pp.706-716, 2008. DOI: http://dx.doi.org/10.1148/radiol.2473071013   DOI   ScienceOn
2 Maunder A, Fallone B, Daneshmand M, "Exp1erimental verification of SNR and parallel imaging improvements using composite arrays", NMR in biomedicine 28(2), pp.141-153, 2015. DOI: http://dx.doi.org/10.1002/nbm.3230   DOI
3 Choi KW, Son SY, Lee HB, "A research on improving signal to noise ratio for magnetic resonance imaging through increasing filling factor inside surface coil", Journal of the Korea Academia-Industrial, 13(11), pp. 5299-5304, 2012. DOI: http://dx.doi.org/10.5762/KAIS.2012.13.11.5299   DOI
4 Hartnell GG, Spence L, Hughes LA, Cohen MC, Saoual R, Buff B, "Safety of MR imaging in patients who have retained metallic materials after cardiac surgery", AJR Am J Roentgenol, 168(5), pp.1157-1159, 1997. DOI: http://dx.doi.org/10.2214/ajr.168.5.9129404   DOI
5 Rosen BR, Belliveau JW, Vevea JM, Brady TJ, "Perfusion imaging with NMR contrast agents". Magn Reson Med, 14, pp.249-265, 1990. DOI: http://dx.doi.org/10.1002/mrm.1910140211   DOI
6 Noebauer H, Iris-Melanie, Pinker K, Barth M, Mlynarik V, Ba-Ssalamah A, Saringer W F, Weber M, Benesch T, Witoszynskyj S, Rauscher A, Reichenbach JR, Trattnig, S, "Contrast- Enhanced, High-Resolution, Susceptibility- Weighted Magnetic Resonance Imaging of the Brain: Dose-Dependent Optimization At 3 Tesla and 1.5 Tesla In Healthy Volunteers" Investigative radiology, 41(30, pp.249-255, 2006.   DOI
7 Ogilvy CS, Stieg PE, Awad I, Brown RD Jr, Kondziolka D, Rosenwasser R, Young WL Hademenos G, "AHA Scientific Statement: recommendations for the management of intracranial arteriovenous malformations: a statement for healthcare professionals from a special writing group of the Stroke Council, American Stroke Association. Stroke, 32(6), pp.1458-1471, 2001. DOI: http://dx.doi.org/10.1161/01.STR.32.6.1458   DOI
8 Goldfarb JW, Hasan U, Zhao W, Han J, "Magnetic resonance susceptibility weighted phase imaging for the assessment of reperfusion intramyocardial hemorrhage Magnetic resonance in medicine", Magn Reson Med. doi: 10.1002/mrm.24747. 2014. DOI: http://dx.doi.org/10.1002/mrm.24747   DOI
9 Bai X, Wang G, Wu L, Liu Y, Cui L, Shi H, Guo L, "Deep-gray nuclei susceptibility-weighted imaging filtered phase shift in patients with Wilson's disease", Pediatric research 75(3) pp.436-442, 0031-3998, 2014. DOI: http://dx.doi.org/10.1038/pr.2013.239   DOI
10 Ogawa S, T.Lee, "magnetic resonance imaging of blood vessel at high field", Magn Reson Med, pp.9-18, 1990. DOI: http://dx.doi.org/10.1002/mrm.1910160103   DOI
11 P. Sprawis, M. J. Bronskill, "The physics of magnetic resonance imaging", 1992.
12 Soman S, Holdsworth SJ, Barnes PD, Rosenberg J, Andre JB, Bammer R, Yeom KW, "Improved T2* Imaging without Increase in Scan Time: SWI Processing of 2D Gradient Echo", AJNR Am J Neuroradiol, 34(11), pp.2092-2097, 2013. DOI: http://dx.doi.org/10.3174/ajnr.A3595   DOI
13 Haacke EM, Mittal S, Wu Z, Neelavalli J, Cheng YC "Susceptibility-weighted imaging: technical aspects and clinical applications, part 1. AJNR Am J Neuroradiol 30(1), pp.19-30, 2000. DOI: http://dx.doi.org/10.3174/ajnr.A1400   DOI
14 Hori M, Ishigame K, Kabasawa H, Kumagai H, Ikenaga S, Shiraga N, Aoki S, Araki T,"Precontrast and postcontrast susceptibility- weighted imaging in the assessment of intracranial brain neoplasms at 1.5 T", Jpn J Radiol, 28(4), pp.299-304, 2010. DOI: http://dx.doi.org/10.1007/s11604-010-0427-z   DOI
15 Liu Q, Fan Z, Yang Q, Li D, "Peripheral arterial wall imaging using contrast-enhanced, susceptibility-weighted phase imaging", J Comput Assist Tomogr, 36(1), pp.77-82, 2012. DOI: http://dx.doi.org/10.1097/RCT.0b013e3182388cdf   DOI
16 Fahrendorf D, Schwindt W, Wolfer J, Jeibmann A, Kooijman H, Kugel H, Grauer O, Heindel W, Hesselmann V, Bink A, "Benefits of contrast- enhanced SWI in patients with glioblastoma multiforme", Eur radiol, 23(10), pp.2868-2879, 2013. DOI: http://dx.doi.org/10.1007/s00330-013-2895-x   DOI
17 Kidwell C, Saver J, Villablance P, Duckwiler G, Fredieu A,Gough K, "Magnetic Resonance Imaging detection of microbleeds before thrombolysis: An Emerging Application", Stroke pp.95-98, 2002. DOI: http://dx.doi.org/10.1161/hs0102.101792   DOI
18 Thomas B, Somasundaram S, Thamburaj K, Kesavadas C, Gupta AK, Boodhey NK, Kapilamoorthy TR "Clinical applications of susceptibility weighted MR imaging of the brain-a pictorial review", Neuroradiology, pp.105-116, 2008. DOI: http://dx.doi.org/10.1007/s00234-007-0316-z
19 Kim TW, Choi HS, Koo J, Jung SL, Ahn KJ, Kim BS, Shin YS, Lee KS, "Intramural Hematoma Detection by Susceptibility-Weighted Imaging in Intracranial Vertebral Artery Dissection", Cerebrovascular diseases, 36(4), pp.292-298, 2013. DOI: http://dx.doi.org/10.1159/000354811   DOI
20 Cheng AL, Batool S, McCreary CR, Lauzon ML, Frayne R, Goyal M, Smith EE, "Susceptibility-Weighted Imaging is More Reliable Than T2*-Weighted Gradient-Recalled Echo MRI for Detecting Microbleeds,Stroke, 44(10), pp.2782-2786, 2013. DOI: http://dx.doi.org/10.1161/STROKEAHA.113.002267   DOI
21 Bernhard D, Klumpp, Sandstede, Klaus P, Lodmann, Achim S, Tobias H, Michael F, Ulrich K, Claus D, Claussen, Stephan M, "Intraindividual comparison of myocardial delayed enhancement MR imagion using gadobenate dimeglumine at 1.5T and 3T", European Radiology, 19(5), pp.1124-1131, 2009. DOI: http://dx.doi.org/10.1007/s00330-008-1248-7   DOI