Browse > Article
http://dx.doi.org/10.5762/KAIS.2012.13.12.5867

A Study on Muscle Architectural and Tissue Compliance of Biceps Brachii in Stroke Patient Based on Elbow Joint Angle  

Bae, Sea-Hyun (Dept. of Physical Therapy, Gwangju Heemang Hospital)
Jeong, Chan-Joo (Dept. of Physical Therapy, Cheongam College)
Kim, Kyung-Yoon (Dept. of Physical Therapy, Dongshin University)
Publication Information
Journal of the Korea Academia-Industrial cooperation Society / v.13, no.12, 2012 , pp. 5867-5874 More about this Journal
Abstract
The aim of this study was to find on muscle architectural and tissue compliance of biceps brachii in stroke patient based on elbow joint angle. The subjects of this study were twelve hemiplegic adults after stroke with passive range of motion in the elbow from $10^{\circ}$ to $90^{\circ}$ and Modified Ashworth Scale score 1 to 3 were recruited. Ultrasonography and Myotonometer was used to measure biceps brachii muscle pennation angle, fascicle length, and tissue compliance at the rest condition and pennation angle, fascicle length, and tissue compliance of the biceps brachii muscle were measured in the affected and unaffected sides of people after stroke at 9 different elbow angles ranging from $10^{\circ}$ to $90^{\circ}$ at the rest condition. The results of this study, comparisons found that the pennation angles of the affected biceps brachii muscle were significantly larger(p<.05) than the unaffected muscle in the most extended positions($<40^{\circ}$), whereas the affected fascicle lengths were significantly shorter(p<.05) than the unaffected muscle in most flexed positions($>20^{\circ}$), and the affected tissue compliance were significantly lower(p<.05) than the unaffected muscle in most extended positions($<50^{\circ}$) Therefore, pennation angles, fascicle lengths, and tissue compliance were found to be joint-angle-dependent in both the affected and unaffected sides at the rest condition. Suggest that, the results data can be used as a muscle architectural changes and clinical treatment research in stroke patients.
Keywords
Stroke; Biceps brachii; Ultrasonographic; Myotonometer; Muscle architectural; Tissue compliance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 L. Li, K. Y. Tong, X. Hu. "The effect of poststroke impairments on brachialis muscle architecture as measured by ultrasound", Arch Phys Med Rehabil, Vol.88, No.2, pp. 243-250, 2007, Article(CrossRefLink)   DOI
2 N. Metoki, Y. Sato, K. Satoh, K. Okumura, J. Iwamoto. "Muscular atrophy in the hemiplegic thigh in patients after stroke", Am J Phys Med Rehabil, Vol.82, No.11, pp. 862-865, 2003, Article(CrossRefLink)   DOI   ScienceOn
3 C. Patten, J. Lexell, H. E. Brown. "Weakness and strength training in persons with poststroke hemiplegia: rationale, method, and efficacy", J Rehabil Res Dev, Vol.41, pp. 293-312, 2004, Article(CrossRefLink)   DOI
4 S. J. Lee, T. R. Han. "A quantitative assessment of spasticity in hemiplegic patients using isokinetic dynamometer", J Korean Acad Rehab Med, Vol.22, No.4, pp.784-792, 1998.
5 G. Chi-Fishman, J. E. Hicks, H. M. Cintas, B. C. Sonies, L. H. Gerber. "Ultrasound imaging distinguishes between normal And weak muscle", Arch Phys Med Rehabil, Vol.85, No.6, pp. 980-986, 2004, Article(CrossRefLink)   DOI
6 N. M. Maurits, E. A. Beenakker, D. E. van Schair, J. M. Fock, J. H. van der Hoeven. "Muscle ultrasound in children: normal values and application to neuromuscular disorders", Ultrasound Med Biol, Vol.30, No.8, pp. 1077-1027, 2004, Article(CrossRefLink)
7 R. L. Lieber, J. Friden. "Functional and clinical significance of skeletal muscle architecture", Muscle Nerve, Vol. 23(11), pp. 1647-1666, 2000, Article(CrossRefLink)   DOI
8 L. Li, K. Y. Tong, X. Hu. "The effect of poststroke impairments on brachialis muscle architecture as measured by ultrasound", Arch Phys Med Rehabil, Vol.88, No.2, pp. 243-250, 2007, Article(CrossRefLink)   DOI
9 C. T. Leonard, J. S. Brown, T. R. Price, S. A. Queen, E. L. Mikhailenok. "Comparison of surface electromyography and myotonometer measurements during voluntary isometric contractions", J Electromyogr Kinesiol, Vol.14, No.6, pp. 709-714, 2004, Article(CrossRefLink)   DOI
10 C. T. Leonard, W. P. Deshner, J. W. Romo, E. S. Suoja, S. C. Fehrer, E. L. Mikhailenok. "Myotonometer intra-and interrater reliabilities", Arch Phys Med Rehabil, Vol.84, No.6, pp. 928-932, 2003, Article(CrossRefLink)   DOI
11 M. V. Marici. "Human skeletal muscle architecture studied in vivo by non-invasive imaging techniques: functional significance and applications", J Electromyogr Kinesiol Vol.9, No.2, pp. 97-103, 1999, Article(CrossRefLink)   DOI
12 M. R. Gossman, S. A. Sahrmann, S. J. Rose. "Review of length-associated changes in muscle. Experimental evidence and clinical implications", Phys Ther, Vol.62, No.12, pp. 1799-1808, 1982.   DOI
13 B. O. Kim, T. M. K, J. M. Chae, K. H. Cho. "Kinetic characteristics during initiation of gait in stroke patients", J Korean Acad Rehab Med, Vol.25, No.2, pp. 227-235, 2001.
14 C. Tardieu, J. C. Tabary, C. Tardieu. "Adaptation of sarcomere numbers to the length imposed on muscle In: F. Guba, G. Marechal, O. Takacs, editors. Mechanism of muscle adaptation to functional requirements", Elmsford: Pergamon Pr; pp. 99-114, 1981.
15 M. V. Narici, T. Binzoni, E. Hiltbrand, J. Fasel, F. Terrier, P. Cerretelli. "In vivo human gastrocnemius architecture with changing joint angle at rest and during graded isometric contraction", J Physiol, Vol.496, pp. 287-297, 1996.   DOI
16 G. S. Chleboun, A. R. France, M. T. Crill, H. K. Braddock, J. N. Howell. "In vivo measurement of fascicle length and pennation angle of the human biceps femoris muscle", Cells Tissues Organs, Vol.169, No.4, pp. 401-409, 2001, Article(CrossRefLink)   DOI
17 T. Fukunaga, Y. Kawakami, S. Kuno, K. Funato, S. Fukashiro. "Muscle architecture and function in humans", J Biomech. Vol.30, No.5, pp. 457-63, 1997, Article(CrossRefLink)   DOI
18 R. D. Woittiez, P. A. Huijing, H. B. Boom, R. H. Rozendal. "A three-dimensional muscle model: a quantified relation between form and function of skeletal muscles", J Morphol, Vol.182, No.1, pp. 95-113, 1984, Article(CrossRefLink)   DOI
19 Y. Kawakami, Y. Ichinose, T. Fukunaga. "Architectural and functional features of human triceps surae muscles during contraction", J Appl Physiol, Vol.85, No.2, pp. 398-404, 1998.   DOI
20 A. P. Shortland, C. A. Harris, M. Gough, R. O. Robinson. "Architecture of the medial gastrocnemius in children with spastic diplegia", Dev Med Child Neurol, Vol.44, No.3, pp. 158-163, 2002, Article(CrossRefLink)   DOI
21 E. M. Halar, W. C. Stolov, B. Venkatesh, F. V. Brozovich, J. D. Harley. "Gastrocnemius muscle belly and tendon length in stroke patients and able-bodied persons", Arch Phys Med Rehabil, Vol.59, No.10, pp. 476-484, 1978.
22 J. Harlaar, J. G. Becher, C. J. Snijders, G. J. Lankhorst. "Passive stiffness characteristics of ankle plantar flexors in hemiplegia", Clin Biomech (Bristol, Avon), Vol.15, No.4, pp. 261-270, 2000, Article(CrossRefLink)   DOI
23 R. L. Lieber, J. Friden. "Spasticity causes a fundamental rearrangement of muscle-joint interaction", Muscle Nerve, Vol.25, No.2, pp. 265-270, 2002, Article(CrossRefLink)   DOI
24 C. Tardieu, E. Huet de la Tour, M. D. Bret, G. Tardieu. "Muscle hypoextensibility in children with cerebral palsy: I. Clinical and experimental observations", Arch Phys Med Rehabil, Vol.63, No.3, pp. 97-102, 1982.
25 W. M. Murray, T. S. Buchanan, S. L. Delp. "The isometric functional capacity of muscles that cross the elbow", J Biomech, Vol.33, No.8, pp. 943-952, 2000, Article(CrossRefLink)   DOI
26 F. E. Zajac. "Muscle and tendon: properties, models, scaling, and application to biomechanics and motor control", Crit Rev Biomed Eng, Vol.17, No.4, pp. 359-411, 1989.
27 T. K. Koo, A. F. Mak, L. K. Hung. "In vivo determination of subject-specific musculotendon parameters: applications to the prime elbow flexors in normal and hemiparetic subjects", Clin Biomech (Bristol, Avon), Vol.17, No.5, pp. 390-399, 2002, Article(CrossRefLink)   DOI