1 |
김민경․이지영․홍지연․김은경(2011). 초등학교 수학 교과서에 나타난 문제의 비구조성에 관한 연구. 학습자중심교과교육연구, 11(2), 1-21.
|
2 |
박성선(1998). 수학학습에서 상황인지론 적용과 전이에 대한 연구. 한국교원대학교 박사학위논문.
|
3 |
우정호․정은실(1995). Polya의 수학적 발견술 연구. 대한수학교육학회 논문집, 5(1), 99-117.
|
4 |
이종희(2003). 수학 문장제 해결과 유추. 교과교육학연구, 7(2), 63-79.
|
5 |
이종희․김진화․김선희(2003). 중학생을 대상으로 한 대수 문장제 해결에서의 유추적 전이. 한국수학교육학회지 시리즈 A <수학교육>, 42(3), 353-368.
|
6 |
이종희․이진향․김부미(2003). 중학생들의 유추에 의한 수학적 문제 해결 과정: 사상의 명료화를 중심으로. 한국수학교육학회지 시리즈 E <수학교육논문집>, 16, 245-267.
|
7 |
Bassok, M. (1997). Two types of reliance on correlation between content and structure in reasoning about word problem. In L. D. English(Ed.), Mathematical reasoning: Anlogies, metaphors, and images (pp. 221-246). Mahwah, NY: Lawrence Erlbaum Associates, Publishers.
|
8 |
Bassok, M., & Olseth, K. L. (1995). Object-based representations: Transfer between cases of continuous and discrete models of change. Journal of Experimental Psychology: Learning, Memory, and Cognition, 21(6), 354-367.
|
9 |
Chen, Z. (1996). Children's analogical problem solving: The effect of superficial, Structural, and procedural similarity. Journal of Experimental Child Psychology, 62(3), 410-431.
DOI
ScienceOn
|
10 |
Chi, M. T. H. (2006). Laboratory method for assessing experts' and novices' knowledge. In K. A. Erricsson, N. Charness, P. J. Feltovich, & R. R. Hoffmann(Eds.), The Cambridge handbook of expertise and expert performance (pp. 167-184). NY: Cambridge University Press.
|
11 |
Chi, M. T. H., & Vanlehn, K. A. (1991). The content of physics self-explanations. Journal of the Learning Science, 1(1), 69-105.
DOI
ScienceOn
|
12 |
Chi, M. T. H., Feltovich, P., & Glaser, R. (1981). Categorization and representation of physics problem by experts and novices. Cognitive Science, 5(2), 121-152.
DOI
ScienceOn
|
13 |
English, L. D. (1997). Children's reasoning process in classifying and solving computational word problem. In L. D. English(Ed.), Mathematical reasoning: Analogies, metaphors, and images (pp. 191-220). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
|
14 |
English, L. D. (2004). Mathematical and analogical reasoning in early childhood. In L. D. English(Ed.), Mathematical and analogical reasoning of young learners (pp. 1-22). Mahwah, NY: Lawrence Erlbaum Associates, Publishers
|
15 |
English, L. D., & Halford, G. S. (1995). Mathematics education: Model and processes. Mahwah, NJ: Lawrence Erlbaum Associates.
|
16 |
English, L. D., & Halford, G. S. (1995). Mathematics education. Mahwah, NY: Lawrence Erlbaum Associates, Publishers.
|
17 |
Erricson, K. A. (2006). Protocol analysis and expert thought: Concurrent verbalizations of thinking during experts' performance on representative tasks. In K. A. Erricson, N. Charness, P. J. Feltovich, & R. R. Hoffmann (Eds.), The Cambridge handbook of expertise and expert performance (pp. 223-242). NY: Cambridge University Press.
|
18 |
Gentner, D., & Loewenstein, J. (2003). Learning: Analogical reasoning. Encyclopedia of Education. NY: Macmillian.
|
19 |
Gick, M. L., & Holyoak, K. J. (1980). Analogical problem solving. Cognitive Psychology, 12, 306-355.
DOI
|
20 |
Gick, M. L., & Holyoak, K. J. (1983). Schema induction and analogical transfer. Cognitive Psychology, 15, 1-38
DOI
|
21 |
Holyoak, K. J., & Koh, K. (1987). Surface and structural similarity in analogical transfer. Memory & Cognition, 15(4), 332-340.
DOI
ScienceOn
|
22 |
Holyoak, K. J., & Thagard, P. (1995). Mental leaps: Analogy in creative thought. Cambridge, MA: MIT Press.
|
23 |
Jay, E. S., & Perkins, D. N. (1997). Problem finding: The search for mechanism. In M. A. Runco (Ed.), The creativity research handbook. Cresskii, NJ: Hampton Press Inc.
|
24 |
Jonassen, D. G. (2010). Research issue in problem solving. Paper presented at the 11th International Conference on Education Research(Seoul, Korea).
|
25 |
Jonassen, D. G., & Hung, W. (2008). All problems are not equal: Implications for problem-based learning. The Interdisciplinary Journal of Problem Based Learning, 2(2), 6-28.
|
26 |
Mayer, R. E. (1992). Thinking, problem solving, cognition. NY: Freeman and Company.
|
27 |
Lamon. S. J. (2005). Teaching fractions and ratios for understanding: Essential content knowledge and instructional strategies for teacher. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
|
28 |
Lave, J. (1988). Cognition in practice. NY: Cambridge University Press.
|
29 |
Lesh, R., Behr, M., & Post, T. (1988). Proportional Reasoning. In J. Hiebert, & M. Behr(Eds.), Number concept and operations in the middle grades pp. 93-118). Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
|
30 |
Mayer, R. E., & Hegarty, M. (1996). The process of understanding mathematical problems. In R. J. Sternberg, & T. Ben-Zeev(Eds.), The nature of mathematical thinking(pp. 5-29). Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
|
31 |
Perkins, D. N., & Salomon, G. (1988). Are cognitive skill context-bound? Educational Researcher, 18(1), 16-25.
|
32 |
Reed, S. K. (1999). Word problems: Research and curriculum reform. Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
|
33 |
Reeves, L. M., & Weisberg, R. W. (1994). The role of content and abstract information in analogical transfer. Psychological Bulletin, 115(3), 381-400.
DOI
|
34 |
Weisberg, R. W. (2006). Expertise and reason in creative thinking. In J. C. Kaufman, & J. Bear(Eds.), Creativity and reason in cognitive development, (pp. 7-42). NY: Cambridge University Press.
|
35 |
Wood, P. K. (1983). Inquiring systems and problem structure: Implications for cognitive development. Human Development, 26(5), 249-265.
DOI
|