Browse > Article
http://dx.doi.org/10.7468/jksmeb.2021.28.2.187

DERIVED FUNCTOR COHOMOLOGY GROUPS WITH YONEDA PRODUCT  

Husain, Hafiz Syed (Department of Mathematical Sciences, Federal Urdu University of Arts, Science & Technology)
Sultana, Mariam (Department of Mathematical Sciences, Federal Urdu University of Arts, Science & Technology)
Publication Information
The Pure and Applied Mathematics / v.28, no.2, 2021 , pp. 187-198 More about this Journal
Abstract
This work presents an exposition of both the internal structure of derived category of an abelian category D*(𝓐) and its contribution in solving problems, particularly in algebraic geometry. Calculation of some morphisms will be presented between objects in D*(𝓐) as elements in appropriate cohomology groups along with their compositions with the help of Yoneda construction under the assumption that the homological dimension of D*(𝓐) is greater than or equal to 2. These computational settings will then be considered under sheaf cohomological context with a particular case from projective geometry.
Keywords
derived category; triangulated category; Yoneda product; sheaf cohomology; smooth projective variety;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Bartocci, U. Bruzzo & D. H. Ruiper'ez: Fourier-Mukai and Nahm Transforms in Geometry and Mathematical Physics. Progress in Mathematics Vol. 276, Birkauser, Boston, 2009.
2 S.I. Gelfand & Yu I. Manin: Methods of Homological Algebra. Springer Monographs in Mathematics, Springer-Verlag, New York, 2003.
3 J. Harris: Algebraic Geometry: A First Course. Graduate Texts in Mathematics, Springer-Verlag, Vol 133. New York, 1992.
4 R. Hartshorne: Algebraic Geometry. Graduate Texts in Mathematics, Springer-Verlag, New York, 1977.
5 R. Hartshorne: Residue and Duality. Lecture Notes in Mathematics, Springer-Verlag, New York, 1966.
6 B. Iversen: Cohomology of Sheaves. Universitext, Springer-Verlag, 1986.
7 S. Katz, T. Pantev & Eric Sharpe: D-Branes, Orbifolds and Ext Groups. Nuclear Physics B 673, (2003), 263-300.   DOI
8 A. Bondal & M. Van den Bergh: Generators and Representability of Funcors in Commutative and Non-Commutative Geometry. Mosc. Math. J. 3 (2003), 1-36.   DOI
9 H. Cartan & S. Eilenberg: Homological Algebra. Princeton University Press, Princeton, New Jersey, 1956.
10 M. Kontsevich: Homological Algebra of Mirror Symmetry. Proceedings of the International Congress of Mathematicians (Zurich, 1994), Birkauser, Boston, Volume 1995, 120139.
11 S.M. Lane: Categories for the Working Mathematician. Springer-Verlag, New York, 1971.
12 B. Lian, K. Liu & S.T. Yau: Mirror Principles-I. Asian J. Math 1 (1997), 729-763.   DOI
13 B. Lian, K. Liu & S.T. Yau: Mirror Principles-III. Asian J. Math 3 (1999), 771-800.   DOI
14 B. Lian, K. Liu & S.T. Yau: Mirror Principles-IV. Surv. Diff. Geom. VII, Volume 2000, 475-496.
15 B. Lian, K. Liu & S.T. Yau: Mirror Principles-II. Asian J. Math 3 (1999), 109-146.   DOI
16 D. Orlov: Derived Categories of Coherent Sheaves and equivalences between them. Russian Math. Surveys 58 (2003), 511-591.   DOI
17 R. Thomas: Derived Categories for the Working Mathematicians. arXiv Math, Article ID arXiv:math/0001045v2 [math.AG], 2001.
18 C.A. Weibel: An Introduction to Homological Algebra. Cambridge University Press, Cambridge, 1994.
19 D. Huybrechts: Fourier-Mukai Transforms in Algebraic Geometry. Oxford Mathematical Monographs, Oxford University Press, New York, 2006.