1 |
C. Bartocci, U. Bruzzo & D. H. Ruiper'ez: Fourier-Mukai and Nahm Transforms in Geometry and Mathematical Physics. Progress in Mathematics Vol. 276, Birkauser, Boston, 2009.
|
2 |
S.I. Gelfand & Yu I. Manin: Methods of Homological Algebra. Springer Monographs in Mathematics, Springer-Verlag, New York, 2003.
|
3 |
J. Harris: Algebraic Geometry: A First Course. Graduate Texts in Mathematics, Springer-Verlag, Vol 133. New York, 1992.
|
4 |
R. Hartshorne: Algebraic Geometry. Graduate Texts in Mathematics, Springer-Verlag, New York, 1977.
|
5 |
R. Hartshorne: Residue and Duality. Lecture Notes in Mathematics, Springer-Verlag, New York, 1966.
|
6 |
B. Iversen: Cohomology of Sheaves. Universitext, Springer-Verlag, 1986.
|
7 |
S. Katz, T. Pantev & Eric Sharpe: D-Branes, Orbifolds and Ext Groups. Nuclear Physics B 673, (2003), 263-300.
DOI
|
8 |
A. Bondal & M. Van den Bergh: Generators and Representability of Funcors in Commutative and Non-Commutative Geometry. Mosc. Math. J. 3 (2003), 1-36.
DOI
|
9 |
H. Cartan & S. Eilenberg: Homological Algebra. Princeton University Press, Princeton, New Jersey, 1956.
|
10 |
M. Kontsevich: Homological Algebra of Mirror Symmetry. Proceedings of the International Congress of Mathematicians (Zurich, 1994), Birkauser, Boston, Volume 1995, 120139.
|
11 |
S.M. Lane: Categories for the Working Mathematician. Springer-Verlag, New York, 1971.
|
12 |
B. Lian, K. Liu & S.T. Yau: Mirror Principles-I. Asian J. Math 1 (1997), 729-763.
DOI
|
13 |
B. Lian, K. Liu & S.T. Yau: Mirror Principles-III. Asian J. Math 3 (1999), 771-800.
DOI
|
14 |
B. Lian, K. Liu & S.T. Yau: Mirror Principles-IV. Surv. Diff. Geom. VII, Volume 2000, 475-496.
|
15 |
B. Lian, K. Liu & S.T. Yau: Mirror Principles-II. Asian J. Math 3 (1999), 109-146.
DOI
|
16 |
D. Orlov: Derived Categories of Coherent Sheaves and equivalences between them. Russian Math. Surveys 58 (2003), 511-591.
DOI
|
17 |
R. Thomas: Derived Categories for the Working Mathematicians. arXiv Math, Article ID arXiv:math/0001045v2 [math.AG], 2001.
|
18 |
C.A. Weibel: An Introduction to Homological Algebra. Cambridge University Press, Cambridge, 1994.
|
19 |
D. Huybrechts: Fourier-Mukai Transforms in Algebraic Geometry. Oxford Mathematical Monographs, Oxford University Press, New York, 2006.
|