Browse > Article

TRAVELING WAVE GLOBAL PRICE DYNAMICS OF LOCAL MARKETS WITH LOGISTIC SUPPLIES  

Kim, Yong-In (DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ULSAN)
Publication Information
The Pure and Applied Mathematics / v.17, no.1, 2010 , pp. 93-106 More about this Journal
Abstract
We employ the methods of Lattice Dynamical System to establish a global model extending the Walrasian evolutionary cobweb model in an independent single local market to the global market evolution over an infinite chain of many local markets with interaction of each other through a diffusion of prices between them. For brevity of the model, we assume linear decreasing demands and logistic supplies with naive predictors, and investigate the traveling wave behaviors of global price dynamics and show that their dynamics are conjugate to those of H$\acute{e}$non maps and hence can exhibit complicated behaviors such as period-doubling bifurcations, chaos, and homoclic orbits etc.
Keywords
Cobweb model; lattice dynamical system; H$\acute{e}$non map;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Curry, J.: On the structure of the Henon attracter. Preprint. National center for atmospheric research (1997).
2 Devaney, R. L. : An introduction to Chaotic Dynamical Systems. Addison-Wesley, 1989.
3 Choudhary, M. A. & Orszag, J. M. : A cobweb model with local externalities. Journal of Economic Dynamics & Control (2007).
4 Afraimovich, V. S. & Bunimovich, L. A. : Simplest structures in coupled map lattices and their stability. preprint in GIT (1992).
5 Bunimovich, L. A. et al : Trivial Maps. Chaos 2 (1992).
6 Bunimovich, L. A. & Sinai, Y. G. : 1988. Spacetime Chaos in Coupled Map Lattices. Nonlinearity 1 (1998), 491-516.
7 Brock, W. A., Hommes, C. H. & Wagner, F.O.O. : Evolutionary dynamics in markets with many trader types. Journal of Mathematical Economics 41 (2005), 7-42.   DOI   ScienceOn
8 Brock, W. A. & Hommes, C. H. : Heterogeneous Beliefs and Routes to Chaos in a Simple Asset Pricing Model. Journal of Economic Dynamics and Control 22 (1998), 1235-1274.   DOI   ScienceOn
9 Aranson, I.S., Afraimovich, V.S. & Rabinovich, M.I.: Stability of spatially homogeneous chaotic regimes in unidirectional chains. Nonlinearity 3 (1990), 639-651.   DOI   ScienceOn
10 Brock, W. A. & Hommes, C. H. : A Rational Route to Randomness. Econometrica 65 (1997), no. 5, 1059-1095.   DOI   ScienceOn
11 Feit, S.: Characteristic exponents and strange attracters. Communications in Mathematical Physics 61 (1978), 249-260.   DOI
12 Arai, Z. & Mischaikow, K.: Rigorous Computations of Homoclinic Tangencies. Preprint. Kyoto University (2006).
13 Sterling, D., Dullin, H.R. & Meiss, J.D.: Homoclinic bifurcations for the Henon map. Physica D 134 (1999), 153-184   DOI   ScienceOn
14 Wiggins S.: Global Bifurcations and Chaos. Springer-Verlag, New York, 1988.
15 Wiggins S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-Verlag, New York, 1990
16 Robinson, C.: Bifurcation to Infinitely many sinks. Communications in Mathematical Physics 90 (1983), 433-459.   DOI
17 Robinson, C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos. CRC Press
18 Kirchgraber, U. & Stoffer, D.: Transversal homoclinic points of the Henon map. Annali di Mathematica 185 (2006), 187-204.   DOI
19 Mora, L. & Viana, M.: Abundance of Strange Attractors. Acta Mathematica 171 (1993), 1-71.   DOI
20 Hommes, C. H. : On the consistency of backward-looking expectations: The case of the cobweb. Journal of Economic Behavior & Organization 33 (1998), 333-362.   DOI
21 Henon, M.: A Two-dimensional Mapping with a Strange Attracter. Communications in Mathematical Physics 50 (1976), 69-77.   DOI
22 Devaney, R. L. & Nitecki, Z.: Shift Automorphisms in the Henon Mapping. Communications in Mathematical Physics 67, 137-146.