Browse > Article
http://dx.doi.org/10.30773/pi.2018.10.10.1

Association between Thioridazine Use and Cancer Risk in Adult Patients with Schizophrenia-A Population-Based Study  

Chang, Cheng-Chen (Department of Psychiatry, Changhua Christian Hospital)
Hsieh, Ming-Hong (School of Medicine, Chung Shan Medical University)
Wang, Jong-Yi (Department of Health Services Administration, China Medical University)
Chiu, Nan-Ying (Department of Psychiatry, Changhua Christian Hospital)
Wang, Yu-Hsun (Department of Medical Research, Chung Shan Medical University Hospital)
Chiou, Jeng-Yuan (Department of Health Policy and Management, Chung Shan Medical University)
Huang, Hsiang-Hsiung (Department of Psychiatry, Tungs' Taichung MetroHarbor Hospital)
Ju, Po-Chung (School of Medicine, Chung Shan Medical University)
Publication Information
Psychiatry investigation / v.15, no.11, 2018 , pp. 1064-1070 More about this Journal
Abstract
Objective Several cell line studies have demonstrated thioridazine's anticancer, multidrug resistance-reversing and apoptosis-inducing properties in various tumors. We conducted this nationwide population-based study to investigate the association between thioridazine use and cancer risk among adult patients with schizophrenia. Methods Based on the Psychiatric Inpatient Medical Claim of the National Health Insurance Research Database of Taiwan, a total of 185,689 insured psychiatric patients during 2000 to 2005 were identified. After excluding patients with prior history of schizophrenia, only 42,273 newly diagnosed patients were included. Among them, 1,631 patients ever receiving thioridazine for more than 30 days within 6 months were selected and paired with 6,256 randomly selected non-thioridazine controls. These patients were traced till 2012/12/31 to see if they have any malignancy. Results The incidence rates of hypertension and cerebrovascular disease were higher among cases than among matched controls. The incidence of hyperlipidemia, coronary artery disease and chronic pulmonary disease did not differ between the two groups. By using Cox proportional hazard model for cancer incidence, the crude hazard ratio was significantly higher in age, hypertension, hyperlipidemia, cerebrovascular disease, coronary artery disease and chronic pulmornary disease. However, after adjusting for other covariates, only age and hypertension remained significant. Thioridazine use in adult patients with schizophrenia had no significant association with cancer. Conclusion Despite our finding that thioridazine use had no prevention in cancer in adult patients with schizophrenia. Based on the biological activity, thioridazine is a potential anticancer drug and further investigation in human with cancer is warranted.
Keywords
Thioridazine; Cancer; Schizophrenia; Oncology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Shen J, Ma B, Zhang X, Sun X, Han J, Wang Y, et al. Thioridazine has potent antitumor effects on lung cancer stem-like cells. Oncol Lett 2017;13:1563-1568.   DOI
2 Zhang C, Gong P, Liu P, Zhou N, Zhou Y, Wang Y. Thioridazine elicits potent antitumor effects in colorectal cancer stem cells. Oncol Rep 2017;37:1168-1174.   DOI
3 Spengler G, Molnar J, Viveiros M, Amaral L. Thioridazine induces apoptosis of multidrug-resistant mouse lymphoma cells transfected with the human ABCB1 and inhibits the expression of P-glycoprotein. Anticancer Res 2011;31:4201-4205.
4 Chou FH, Tsai KY, Su CY, Lee CC. The incidence and relative risk factors for developing cancer among patients with schizophrenia: a nineyear follow-up study. Schizophr Res 2011;129:97-103.   DOI
5 Yde CW, Clausen MP, Bennetzen MV, Lykkesfeldt AE, Mouritsen OG, Guerra B. The antipsychotic drug chlorpromazine enhances the cytotoxic effect of tamoxifen in tamoxifen-sensitive and tamoxifen-resistant human breast cancer cells. Anticancer Drugs 2009;20:723-735.   DOI
6 Rybakowski JK, Skibinska M, Kapelski P, Kaczmarek L, Hauser J. Functional polymorphism of the matrix metalloproteinase-9 (MMP-9) gene in schizophrenia. Schizophr Res 2009;109:90-93.   DOI
7 Stocks T, Van Hemelrijck M, Manjer J, Bjorge T, Ulmer H, Hallmans G, et al. Blood pressure and risk of cancer incidence and mortality in the Metabolic Syndrome and Cancer Project. Hypertension 2012;59:802-810.   DOI
8 Radisauskas R, Kuzmickiene I, Milinaviciene E, Everatt R. Hypertension, serum lipids and cancer risk: A review of epidemiological evidence. Medicina (Kaunas) 2016;52:89-98.   DOI
9 Largent JA, Bernstein L, Horn-Ross PL, Marshall SF, Neuhausen S, Reynolds P, et al. Hypertension, antihypertensive medication use, and breast cancer risk in the California Teachers Study cohort. Cancer Causes Control 2010;21:1615-1624.   DOI
10 Seo SU, Cho HK, Min KJ, Woo SM, Kim S, Park JW, et al. Thioridazine enhances sensitivity to carboplatin in human head and neck cancer cells through downregulation of c-FLIP and Mcl-1 expression. Cell Death Dis 2017;8:e2599.   DOI
11 Jin X, Zou B, Luo L, Zhong C, Zhang P, Cheng H, et al. Codelivery of thioridazine and doxorubicin using nanoparticles for effective breast cancer therapy. Int J Nanomedicine 2016;11:4545-4552.   DOI
12 Gil-Ad I, Shtaif B, Levkovitz Y, Nordenberg J, Taler M, Korov I, et al. Phenothiazines induce apoptosis in a B16 mouse melanoma cell line and attenuate in vivo melanoma tumor growth. Oncol Rep 2006;15:107-112.
13 Campisi J. Aging, cellular senescence, and cancer. Annu Rev Physiol 2013;75:685-705.   DOI
14 Nagel D, Spranger S, Vincendeau M, Grau M, Raffegerst S, Kloo B, et al. Pharmacologic inhibition of MALT1 protease by phenothiazines as a therapeutic approach for the treatment of aggressive ABC-DLBCL. Cancer Cell 2012;22:825-837.   DOI
15 Byun HJ, Lee JH, Kim BR, Kang S, Dong SM, Park MS, et al. Anti-angiogenic effects of thioridazine involving the FAK-mTOR pathway. Microvasc Res 2012;84:227-234.   DOI
16 Park MS, Dong SM, Kim BR, Seo SH, Kang S, Lee EJ, et al. Thioridazine inhibits angiogenesis and tumor growth by targeting the VEGFR-2/PI3K/mTOR pathway in ovarian cancer xenografts. Oncotarget 2014;5:4929-4934.
17 Kang S, Dong SM, Kim BR, Park MS, Trink B, Byun HJ, et al. Thioridazine induces apoptosis by targeting the PI3K/Akt/mTOR pathway in cervical and endometrial cancer cells. Apoptosis 2012;17:989-997.   DOI
18 Mu J, Xu H, Yang Y, Huang W, Xiao J, Li M, et al. Thioridazine, an antipsychotic drug, elicits potent antitumor effects in gastric cancer. Oncol Rep 2014;31:2107-2114.   DOI
19 Strobl JS, Kirkwood KL, Lantz TK, Lewine MA, Peterson VA, Worley JF 3rd. Inhibition of human breast cancer cell proliferation in tissue culture by the neuroleptic agents pimozide and thioridazine. Cancer Res 1990;50:5399-5405.
20 Zhelev Z, Ohba H, Bakalova R, Hadjimitova V, Ishikawa M, Shinohara Y, et al. Phenothiazines suppress proliferation and induce apoptosis in cultured leukemic cells without any influence on the viability of normal lymphocytes. Phenothiazines and leukemia. Cancer Chemother Pharmacol 2004;53:267-275.   DOI
21 Rho SB, Kim BR, Kang S. A gene signature-based approach identifies thioridazine as an inhibitor of phosphatidylinositol-3'-kinase (PI3K)/AKT pathway in ovarian cancer cells. Gynecol Oncol 2011;120:121-127.   DOI
22 Spengler G, Csonka A, Molnar J, Amaral L. The aticancer activity of the old neuroleptic phenothiazine-type drug thioridazine. Anticancer Res 2016;36:5701-5706.   DOI
23 Yue H, Huang D, Qin L, Zheng Z, Hua L, Wang G, et al. Targeting lung cancer stem cells with antipsychological drug thioridazine. Biomed Res Int 2016;2016:6709828.
24 Meng Q, Sun X, Wang J, Wang Y, Wang L. The important application of thioridazine in the endometrial cancer. Am J Transl Res 2016;8:2767-2775.