Browse > Article
http://dx.doi.org/10.7232/JKIIE.2013.39.5.403

Augmented Weighted Tchebycheff Modeling and Robust Design Optimization on a Drug Development Process  

Ho, Le Tuan (Department of Industrial and Management Systems Engineering, Dong-A University)
Shin, Sangmun (Department of Industrial and Management Systems Engineering, Dong-A University)
Publication Information
Journal of Korean Institute of Industrial Engineers / v.39, no.5, 2013 , pp. 403-411 More about this Journal
Abstract
The quality of the products/processes has been improved remarkably since robust design (RD) methodology is applied into the practice manufacturing processes. A model building method based on the dual responses methods for multiple and time oriented responses on a drug development process is employed in this paper instead of the previous methods that handle the static nature of data and single response. Subsequently, the optimal solutions of a multiple and time series RD problem are obtained by using the proposed augmented weighted Tchebycheff method that has a significant flexibility on assigning weights. Finally, a pharmaceutical case study associated with a generic drug development process is conducted in order to illustrate the efficient optimal solutions from the proposed model.
Keywords
Robust Design; Augmented Weighted Tchebycheff Method; Drug Development Process; Optimization;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Tang, L. C. and Xu, K. (2002), A Unified Approach for Dual Response Surface Optimization, Journal of Quality Technology, 34(4), 437-447.   DOI
2 Tind, J. and Wiecek, M. M. (1999), Augmented Lagrangian and Tchebycheff approaches in multiple objective programming, Journal of Global Optimization, 14, 251-266.   DOI
3 Truong, N. K. V., Shin, S. M., and Jeong, S. H. (2011), Integrating Inverse problem to robust design for a generic drug development process, Journal of the Korean Society for Quality Management, 39(3), 365-376.
4 Tsui, K. L. (1992), An overview of Taguchi method and newly developed statistical methods for robust design, IIE Transactions, 24(5), 44-57.   DOI   ScienceOn
5 Vining, G. G. and Myers, R. H. (1990), Combining Taguchi and Response Surface Philosophies : A dual Response Approach, Journal of Quality Technology, 22, 38-45.   DOI
6 Zadeh, L. A. (1963), Optimality and non-scalar-valued performance criteria, IEEE Trans, Autom. Control AC-8, 59-60.
7 Zionts, S. (1988), Multiple criteria mathematical programming : an updated overview and several approaches. In : Mitra, G. (ed.) Mathematical Models for Decision Support, 135-167. Berlin : Springer-Verlag.
8 Box, G. (1988), Signal-to-Noise Ratios, Performance Criteria, and Transformations, Technometrics, 30(1), 1-17.   DOI   ScienceOn
9 Castillo, E. and Montgomery, D. C. (1993), A nonlinear programming solution to the dual response problem, Journal of Quality Technology, 25, 199-204.   DOI
10 Cho, B. R., Philips, M. D., and Kapur, K. C. (1996), Quality improvement by RSM modeling for robust design, The 5th Industrial Engineering Research Conference, Minneapolis, MN, 650-655.
11 Cho, B. R., Shin, S. M., Choi, Y., and Kovach, J. (2009), Development of a Multidisciplinary Optimization Process for Designing Optimal Pharmaceutical Formulations with Constrained Experimental Regions, International Journal of Advanced Manufacturing Technology, 44, 841-853.   DOI
12 Choi, D. H., Shin, S. M., Truong, N. K. V., Jung, Y. J., Chu, K. R., and Jeong, S. H. (2012), A new experimental design method to optimize formulations focusing on a lubricant for hydrophilic matrix tablets, Journal of Drug Development and Industrial pharmacy, 38(9), 1117-1127.   DOI   ScienceOn
13 Copeland, K. A. F. and Nelson, P. R. (1996), Dual Response Optimization via Direct Function Minimization, Journal of Quality Technology, 28 (3), 331-336.   DOI
14 Dachert, K., Gorski, J., and Klamroth, K. (2012), An augmented weighted Tchebycheff method with adaptively chosen parameters for discrete bicriteria optimization problems, Computers and Operations Research, 39(12), 2929-2943.   DOI   ScienceOn
15 Del Castillo, E. and Montgomery, D. C. (1993), A nonlinear programming solution to the dual response problem, Journal of Quality Technology, 25, 199-204.   DOI
16 Ding, R., Lin, D. K. J., and Wei, D. (2004), Dual Response Surface Optimization : A Weighted MSE Approach, Quality Engineering, 16(3), 377-385.   DOI   ScienceOn
17 Ehrgott, M. (2006), A discussion of scalarization techniques for multiple objective integer programming, Ann Oper Res, 147, 343-360.   DOI
18 Goethals, P. L. and Cho, B. R. (2011), The development of a robust design methodology for time-oriented dynamic quality characteristics with a target profile, Quality and Reliability Engineering International, 27, 403-414.   DOI   ScienceOn
19 Kasimbeyli, R. (2013), A conic scalarization method in multiobjective optimization, J Glob Optim, 56, 279-297.   DOI   ScienceOn
20 Hsieh, K., Tong, L., Chiu, H., and Yeh, H. (2005), Optimization of a multiresponse problem in Taguchi's dynamic system, Computers and Industrial Engineering, 49, 556-571.   DOI   ScienceOn
21 Kim, Y. J. and Cho, B. R. (2002), Development of Priority-Based Robust Design, Quality Engineering, 14, 355-363.   DOI   ScienceOn
22 Kim, K. J. and Lin, D. K. J. (1998), Dual response surface optimization : A fuzzy modeling approach, Journal of Quality Technology, 30, 1-10.   DOI
23 Koksoy, O. and Doganaksoy, N. (2003), Joint optimization of mean and standard deviation using response surface methods, Journal of Quality Technology, 35, 239-252.   DOI
24 Kovach, J. and Cho, B. R. (2008), Development of a multidisciplinarymultiresponse robust design optimization model, Engineering Optimization, 40, 805-819.   DOI   ScienceOn
25 Leon, R. V., Shoemaker, A. C., and Kacker, R. N. (1987), Performance measures independent of adjustment-An explanation and extension of Taguchi's signal-to-noise ratios, Technometrics, 29(3), 253-265.   DOI   ScienceOn
26 Lin, D. K. J. and Tu, W. (1995), Dual response surface optimization, Journal of Quality Technology, 27, 34-39.   DOI
27 Marler, R. T. and Arora, J. S. (2004), Survey of multiobjective optimization methods for engineering, Struct Multidisc Optim, 26, 369-395.   DOI   ScienceOn
28 Miettinen, K. (1999), Nonlinear multiobjective optimization, Boston : Kluwer Academic Publishers.
29 Miettinen, K. and Makela, M. M. (2002), On scalarizing functions in multiobjective optimization, OR Spectrum, 24, 193-213.   DOI
30 Myers, R. H. and Montgomery, D. C. (2002), Response surface methodology : process and product optimization using designed experiments (2nd ed.). J. Wiley, New York.
31 Nair, V. N. (1992), Taguchi's Parameter Design : A Panel Discussion, Technometrics, 34, 127-161.   DOI   ScienceOn
32 Nha, V. T., Shin, S. M., and Jeong, S. H. (2013), Lexicographical dynamic goal programming approach to a robust design optimization within the pharmaceutical environment, European Journal of Operational Research, 229(2), 505-517.   DOI   ScienceOn
33 Ralphs, T. K., Saltzman, M. J., and Wiecek., M. M. (2006), An improved algorithm for solving biobjective integer programs, Annals of Operations Research, 147(1), 43-70.   DOI
34 Reddy, K., Nishina1, A., and Babu, S. (1998), Unificationofrobust design and goal programming for multiresponse optimization-a case study, Quality and Reliability Engineering International, 13(6), 371-383.
35 Robinson, T. J., Wulff, S. S., Montgomery, D. S., and Khuri, A. I. (2006), Robust parameter design using generalized linear mixed models, Journal of Quality Technology, 38, 65-75.   DOI
36 Shin, S. M. and Cho, B. R. (2005), Bias-specified robust design optimization and an analytical solutions, Computers and Industrial Engineering, 48, 129-148.   DOI   ScienceOn
37 Shin, S., Choi, D. H., Truong, N. K. V., Kim, N. A., Chu, K. R., and Jeong, S. H. (2011), Time-oriented experimental design method to optimize hydrophilic matrix formulations with gelation kinetics and drug release profiles, International Journal of Pharmaceutics, 407, 53-62.   DOI   ScienceOn
38 Steuer, R. E. (1986), Multiple Criteria Optimization : Theory, Computation and Application, Wiley, New York, NY.
39 Steuer, R. E. and Choo, E. U. (1983), An interactive weighted Tchebycheff procedure for multiple objective programming, Mathematical Programming, 26, 326-344.   DOI   ScienceOn