Browse > Article
http://dx.doi.org/10.4069/kjwhn.2021.03.12

Birth cohort effects on maternal and child environmental health: a systematic review  

Chae, JungMi (Review & Assessment Research Department, HIRA Research Institute)
Kim, Hyun Kyoung (Department of Nursing, Kongju National University)
Publication Information
Women's Health Nursing / v.27, no.1, 2021 , pp. 27-39 More about this Journal
Abstract
Purpose: This study aimed to review recent findings from birth cohort studies on maternal and child environmental health. Methods: Birth cohort studies regarding environmental health outcomes for mothers and their children were investigated through a systematic review. A literature search was conducted in PubMed, CINAHL, the Cochrane Library, Embase, and RISS to identify published studies using the keywords using a combination of the following keywords: maternal exposure, environmental exposure, health, cohort, and birth cohort. Articles were searched and a quality appraisal using the Newcastle-Ottawa Scale for cohort studies was done. Results: A review of the 14 selected studies revealed that prenatal and early life exposure to environmental pollutants had negative impacts on physical, cognitive, and behavioral development among mothers and children up to 12 years later. Environmental pollutants included endocrine disruptors, air pollution (e.g., particulate matter), and heavy metals. Conclusion: This systematic review demonstrated that exposure to environmental pollutants negatively influences maternal and children's environmental health outcomes from pregnancy to the early years of life. Therefore, maternal health care professionals should take steps to reduce mothers' and children's exposure to environmental pollutants.
Keywords
Cohort studies; Environmental exposure; Environmental health; Pregnancy; Systematic review;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Aker AM, Watkins DJ, Johns LE, Ferguson KK, Soldin OP, Anzalota Del Toro LV, et al. Phenols and parabens in relation to reproductive and thyroid hormones in pregnant women. Environ Res. 2016;151:30-37. https://doi.org/10.1016/j.envres.2016.07.002   DOI
2 Jusko TA, De Roos AJ, Lee SY, Thevenet-Morrison K, Schwartz SM, Verner MA, et al. A birth cohort study of maternal and infant serum PCB-153 and DDE concentrations and responses to infant tuberculosis vaccination. Environ Health Perspect. 2016;124(6):813-821. https://doi.org/10.1289/ehp.1510101   DOI
3 Bougas N, Ranciere F, Beydon N, Viola M, Perrot X, Gabet S, et al. Traffic-related air Pollution, lung function, and host vulnerability. New insights from the PARIS birth cohort. Ann Am Thorac Soc. 2018;15(5):599-607. https://doi.org/10.1513/AnnalsATS.201711-900OC   DOI
4 Fioravanti S, Cesaroni G, Badaloni C, Michelozzi P, Forastiere F, Porta D. Traffic-related air pollution and childhood obesity in an Italian birth cohort. Environ Res. 2018;160:479-486. https://doi.org/10.1016/j.envres.2017.10.003   DOI
5 Clemente D, Vrijheid M, Martens DS, Bustamante M, Chatzi L, Danileviciute A, et al. Prenatal and childhood traffic-related air pollution exposure and telomere length in European children: the HELIX project. Environ Health Perspect. 2019; 127(8):87001. https://doi.org/10.1289/EHP4148   DOI
6 Haug LS, Sakhi AK, Cequier E, Casas M, Maitre L, Basagana X, et al. In-utero and childhood chemical exposome in six European mother-child cohorts. Environ Int. 2018;121(1):751-763. https://doi.org/10.1016/j.envint.2018.09.056   DOI
7 Impinen A, Nygaard UC, Lodrup Carlsen KC, Mowinckel P, Carlsen KH, Haug LS, et al. Prenatal exposure to perfluoralkyl substances (PFASs) associated with respiratory tract infections but not allergy- and asthma-related health outcomes in childhood. Environ Res. 2018;160:518-523. https://doi.org/10.1016/j.envres.2017.10.012   DOI
8 Kampouri M, Kyriklaki A, Roumeliotaki T, Koutra K, Anousaki D, Sarri K, et al. Patterns of early-life social and environmental exposures and child cognitive development, Rhea birth cohort, Crete, Greece. Child Develop. 2018;89(4):1063-1073. https://doi.org/10.1111/cdev.12782   DOI
9 Madhloum N, Nawrot TS, Gyselaers W, Roels HA, Bijnens E, Vanpoucke C, et al. Neonatal blood pressure in association with prenatal air pollution exposure, traffic, and land use indicators: An ENVIRONAGE birth cohort study. Environ Int. 2019;130:104853. https://doi.org/10.1016/j.envint.2019.05.047   DOI
10 Rahman A, Kumarathasan P, Gomes J. Infant and mother related outcomes from exposure to metals with endocrine disrupting properties during pregnancy. Sci Total Environ. 2016;569-570:1022-1031. https://doi.org/10.1016/j.scitotenv.2016.06.134   DOI
11 Guo LQ, Chen Y, Mi BB, Dang SN, Zhao DD, Liu R, et al. Ambient air pollution and adverse birth outcomes: a systematic review and meta-analysis. J Zhejiang Univ Sci B. 2019;20(3):238-252. https://doi.org/10.1631/jzus.B1800122   DOI
12 Bidwell S, Jensen MF. Etext on Health Technology Assessment (HTA) information resources. Chapter 3: using a search protocol to identify sources of information: the COSI model [Internet]. Bethesda, MD: U.S. National Library of Medicine; 2003 [updated 2003 Jun 14; cited 2019 Aug 20]. Available from: https://www.nlm.nih.gov/archive/20060905/nichsr/ehta/chapter3.html#COSI
13 Pansieri C, Pandolfini C, Clavenna A, Choonara I, Bonati M. An inventory of European birth cohorts. Int J Environ Res Public Health. 2020;17(9):3071. https://doi.org/10.3390/ijerph17093071   DOI
14 Kim SY, Park JE, Seo HJ, Lee YJ, Jang BH, Son HJ, et al. NECA's guidance for understanding systematic reviews and meta-analysis for intervention. Seoul: National Evidence-based Collaborating Agency; 2011.
15 Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions version 5.1.0 [Internet]. London: The Cochrane Collaboration; 2011 [cited 2019 Dec 3]. Available from: http://handbook.cochrane.org
16 Morgan RL, Thayer KA, Bero L, Bruce N, Falck-Ytter Y, Ghersi D, et al. GRADE: assessing the quality of evidence in environmental and occupational health. Environ Int. 2016;92-93:611-616. https://doi.org/10.1016/j.envint.2016.01.004   DOI
17 Vafeiadi M, Agramunt S, Pedersen M, Besselink H, Chatzi L, Fthenou E, et al. In utero exposure to compounds with dioxin-like activity and birth outcomes. Epidemiol. 2014;25(2):215-224. https://doi.org/10.1097/EDE.0000000000000046   DOI
18 Ma LL, Wang YY, Yang ZH, Huang D, Weng H, Zeng XT. Methodological quality (risk of bias) assessment tools for primary and secondary medical studies: what are they and which is better? Mil Med Res. 2020;7(1):7. https://doi.org/10.1186/s40779-020-00238-8   DOI
19 Wells G, Shea B, O'Connell D, Peterson J, Welch V, Losos M, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies in meta-analyses [Internet]. Ottawa: Ottawa Hospital Research Institute; c2021 [cited 2020 Jun 16]. Available from: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp
20 Hong YC, Kulkarni SS, Lim YH, Kim E, Ha M, Park H, et al. Postnatal growth following prenatal lead exposure and calcium intake. Pediatrics. 2014;134(6):1151-1159. https://doi.org/10.1542/peds.2014-1658   DOI
21 Jiang M, Qiu J, Zhou M, He X, Cui H, Lerro C, et al. Exposure to cooking fuels and birth weight in Lanzhou, China: a birth cohort study. BMC Public Health. 2015;15:712. https://doi.org/10.1186/s12889-015-2038-1   DOI
22 Hojo S, Mizukoshi A, Azuma K, Okumura J, Ishikawa S, Miyata M, et al. Survey on changes in subjective symptoms, onset/trigger factors, allergic diseases, and chemical exposures in the past decade of Japanese patients with multiple chemical sensitivity. Int J Hyg Environ Health. 2018;221(8):1085-1096. https://doi.org/10.1016/j.ijheh.2018.08.001   DOI
23 Edokpolo B, Allaz-Barnett N, Irwin C, Issa J, Curtis P, Green B, et al. Developing a conceptual framework for environmental health tracking in Victoria, Australia. Int J Environ Res Public Health. 2019;16(10):1748. https://doi.org/10.3390/ijerph16101748   DOI
24 Doherty BT, Engel SM, Buckley JP, Silva MJ, Calafat AM, Wolff MS. Prenatal phthalate biomarker concentrations and performance on the Bayley Scale of Infant Development-II in a population of young urban children. Environ Res. 2017;152:51-58. https://doi.org/10.1016/j.envres.2016.09.021   DOI
25 Larranaga I, Santa-Marina L, Molinuevo A, Alvarez-Pedrerol M, Fernandez-Somoano A, Jimenez-Zabala A, et al. Poor mothers, unhealthy children: the transmission of health inequalities in the INMA study, Spain. Eur J Public Health. 2019;29(3):568-574. https://doi.org/10.1093/eurpub/cky239   DOI
26 Pell T, Eliot M, Chen A, Lanphear BP, Yolton K, Sathyanarayana S, et al. Parental concern about environmental chemical exposures and children's urinary concentrations of phthalates and phenols. J Pediatr. 2017;186:138-144. https://doi.org/10.1016/j.jpeds.2017.03.064   DOI
27 Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. EDC-2: The Endocrine Society's second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):E1-E150. https://doi.org/10.1210/er.2015-1010   DOI
28 Vabre P, Gatimel N, Moreau J, Gayrard V, Picard-Hagen N, Parinaud J, et al. Environmental pollutants, a possible etiology for premature ovarian insufficiency: a narrative review of animal and human data. Environ Health. 2017;16(1):37. https://doi.org/10.1186/s12940-017-0242-4   DOI
29 Albouy-Llaty M, Limousi F, Carles C, Dupuis A, Rabouan S, Migeot V. Association between exposure to endocrine disruptors in drinking water and preterm birth, taking neighborhood deprivation into account: a historic cohort study. Int J Environ Res Public Health. 2016;13(796):2-16. https://doi.org/10.3390/ijerph13080796   DOI
30 Botton J, Philippat C, Calafat AM, Carles S, Charles MA, Slama R, et al. Phthalate pregnancy exposure and male offspring growth from the intra-uterine period to five years of age. Environ Res. 2016;151:601-609. https://doi.org/10.1016/j.envres.2016.08.033   DOI
31 Lee YM, Hong YC, Ha MN, Kim YH, Park HS, Kim HS, et al. Prenatal bisphenol-A exposure affects fetal length growth by maternal glutathione transferase polymorphisms, and neonatal exposure affects child volume growth by sex: from multi-regional prospective birth cohort MOCEH study. Sci Total Environ. 2018;612:1433-1441. https://doi.org/10.1016/j.scitotenv.2017.08.317   DOI
32 Marsillach J, Costa LG, Furlong CE. Paraoxonase-1 and early-life environmental exposure. Ann Glob Health. 2016; 82(1):100-110. https://doi.org/10.1016/j.aogh.2016.01.009   DOI
33 Abad M, Malekafzali CH, Simbar M, Mosaavi HS, Khoei EM. Association between electromagnetic field exposure and abortion in pregnant women living in Tehran. Iranian J Reprod Med. 2016;14(5):347-354. https://doi.org/10.29252/ijrm.14.5.347   DOI
34 Philippat C, Heude B, Botton J, Alfaidy N, Calafat AM, Slama R, et al. Prenatal exposure to select phthalates and phenols and associations with fetal and placental weight among male births in the EDEN cohort (France). Environ Health Perspect. 2019;127(1):17002. https://doi.org/10.1289/EHP3523   DOI
35 Shah S, Jeong KS, Park H, Hong YC, Kim Y, Kim B, et al. Environmental pollutants affecting children's growth and development: collective results from the MOCEH study, a multi-centric prospective birth cohort in Korea. Environ Int. 2020;137: 105547. https://doi.org/10.1016/j.envint.2020.105547   DOI
36 Mallozzi M, Bordi G, Garo C, Caserta D. The effect of maternal exposure to endocrine disrupting chemicals on fetal and neonatal development: a review on the major concerns. Birth Defects Res C Embryo Today. 2016;108(3):224-242. https://doi.org/10.1002/bdrc.21137   DOI
37 Brandstetter S, Toncheva AA, Niggel J, Wolff C, Gran S, Seelbach-Gobel B, et al. KUNO-Kids birth cohort study: rationale, design, and cohort description. Mol Cell Pediatr. 2019;6(1):1. https://doi.org/10.1186/s40348-018-0088-z   DOI