Browse > Article
http://dx.doi.org/10.1186/s40824-018-0118-x

Regulation of lubricin for functional cartilage tissue regeneration: a review  

Lee, Yunsup (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University)
Choi, Jaehoon (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University)
Hwang, Nathaniel S. (School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University)
Publication Information
Biomaterials Research / v.22, no.2, 2018 , pp. 75-84 More about this Journal
Abstract
Background: Lubricin is chondrocyte-secreted glycoprotein that primarily conducts boundary lubrication between joint surfaces. Besides its cytoprotective function and extracellular matrix (ECM) attachment, lubricin is recommended as a novel biotherapeutic protein that restore functional articular cartilage. Likewise, malfunction of lubrication in damaged articular cartilage caused by complex and multifaceted matter is a major concern in the field of cartilage tissue engineering. Main body: Although a noticeable progress has been made toward cartilage tissue regeneration through numerous approaches such as autologous chondrocyte implantation, osteochondral grafts, and microfracture technique, the functionality of engineered cartilage is a challenge for complete reconstruction of cartilage. Thus, delicate modulation of lubricin along with cell/scaffold application will expand the research on cartilage tissue engineering. Conclusion: In this review, we will discuss the empirical analysis of lubricin from fundamental interpretation to the practical design of gene expression regulation.
Keywords
Lubricin; Articular cartilage; ECM; Tissue engineering; Superficial zone protein (SZP);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Klein TJ, Schumacher BL, Blewis ME, Schmidt TA, Voegtline MS, Thonar EJ, Masuda K, Sah RL. Tailoring secretion of proteoglycan 4 (PRG4) in tissue-engineered cartilage. Tissue Eng. 2006;12(6):1429-39.   DOI
2 Coates EE, Riggin CN, Fisher JP. Matrix molecule influence on chondrocyte phenotype and proteoglycan 4 expression by alginate-embedded zonal chondrocytes and mesenchymal stem cells. J Orthop Res. 2012;30(12):1886-97.   DOI
3 Grogan SP, Chen X, Sovani S, Taniguchi N, Colwell CW Jr, Lotz MK, D'Lima DD. Influence of cartilage extracellular matrix molecules on cell phenotype and neocartilage formation. Tissue Eng Part A. 2014;20(1-2):264-74.   DOI
4 Steele JA, McCullen SD, Callanan A, Autefage H, Accardi MA, Dini D, Stevens MM. Combinatorial scaffold morphologies for zonal articular cartilage engineering. Acta Biomater. 2014;10(5):2065-75.   DOI
5 Wei Q, Pei X, Hao J, Cai M, Zhou F, Liu W. Surface Modification of Diamond-Like Carbon Film with Polymer Brushes Using a Bio-Inspired Catechol Anchor for Excellent Biological Lubrication. Adv Mater Interfaces. 2014;1(5):n/a.
6 Schmidt TA, Gastelum NS, Han EH, Nugent-Derfus GE, Schumacher BL, Sah RL. Differential regulation of proteoglycan 4 metabolism in cartilage by IL-1alpha, IGF-I, and TGF-beta1. Osteoarthr Cartil. 2008;16(1):90-7.   DOI
7 Cheng J, Wang Y, Wang Z, Yang M, Wu Y. Differential Regulation of Proteoglycan-4 Expression by IL-$1{\alpha}$ and TGF-${\beta}1$ in Rat Condylar Chondrocytes. Tohoku J Exp Med. 2010;222(3):211-8.   DOI
8 Lee SY, Niikura T, Reddi AH. Superficial zone protein (lubricin) in the different tissue compartments of the knee joint: modulation by transforming growth factor beta 1 and interleukin-1 beta. Tissue Eng Part A. 2008;14(11):1799-808.   DOI
9 Soltz MA, Ateshian GA. Interstitial Fluid Pressurization During Confined Compression Cyclical Loading of Articular Cartilage. Ann Biomed Eng. 2000; 28(2):150-9.   DOI
10 Elder BD, Athanasiou KA. Hydrostatic pressure in articular cartilage tissue engineering: from chondrocytes to tissue regeneration. Tissue Eng Part B Rev. 2009;15(1):43-53.   DOI
11 Krishnan R, Park S, Eckstein F, Ateshian GA. Inhomogeneous Cartilage Properties Enhance Superficial Interstitial Fluid Support and Frictional Properties, But Do Not Provide a Homogeneous State of Stress. J Biomech Eng. 2003;125(5):569.   DOI
12 Krishnan R, Kopacz M, Ateshian GA. Experimental verification of the role of interstitial fluid pressurization in cartilage lubrication. J Orthop Res. 2004; 22(3):565-70.   DOI
13 Marcelino J, Carpten JD, Suwairi WM, Gutierrez OM, Schwartz S, Robbins C, Sood R, Makalowska I, Baxevanis A, Johnstone B, et al. CACP, encoding a secreted proteoglycan, is mutated in camptodactyly-arthropathy-coxa varapericarditis syndrome. Nat Genet. 1999;23(3):319-22.   DOI
14 Flannery CR, Hughes CE, Schumacher BL, Tudor D, Aydelotte MB, Kuettner KE, Caterson B. Articular cartilage superficial zone protein (SZP) is homologous to megakaryocyte stimulating factor precursor and Is a multifunctional proteoglycan with potential growth-promoting, cytoprotective, and lubricating properties in cartilage metabolism. Biochem Biophys Res Commun. 1999;254(3):535-41.   DOI
15 Ikegawa S, Sano M, Koshizuka Y, Nakamura Y. Isolation, characterization and mapping of the mouse and human PRG4 (proteoglycan 4) genes. Cytogenetic and Genome Research. 2000;90(3-4):291-7.   DOI
16 Jay GD, Tantravahi U, Britt DE, Barrach HJ, Cha CJ. Homology of lubricin and superficial zone protein (SZP): products of megakaryocyte stimulating factor (MSF) gene expression by human synovial fibroblasts and articular chondrocytes localized to chromosome 1q25. J Orthop Res. 2001;19(4):677-87.   DOI
17 Liu C, Ma X, Li T, Zhang Q. Kartogenin, transforming growth factor-beta1 and bone morphogenetic protein-7 coordinately enhance lubricin accumulation in bone-derived mesenchymal stem cells. Cell Biol Int. 2015; 39(9):1026-35.   DOI
18 McNary SM, Athanasiou KA, Reddi AH. Transforming growth factor beta-induced superficial zone protein accumulation in the surface zone of articular cartilage is dependent on the cytoskeleton. Tissue Eng Part A. 2014;20(5-6):921-9.   DOI
19 Niikura T, Reddi AH. Differential regulation of lubricin/superficial zone protein by transforming growth factor beta/bone morphogenetic protein superfamily members in articular chondrocytes and synoviocytes. Arthritis Rheum. 2007;56(7):2312-21.   DOI
20 Khalafi A, Schmid TM, Neu C, Reddi AH. Increased accumulation of superficial zone protein (SZP) in articular cartilage in response to bone morphogenetic protein-7 and growth factors. J Orthop Res. 2007;25(3):293-303.   DOI
21 Cuellar A, Reddi AH. Stimulation of Superficial Zone Protein/Lubricin/PRG4 by Transforming Growth Factor-beta in Superficial Zone Articular Chondrocytes and Modulation by Glycosaminoglycans. Tissue Eng Part A. 2015;21(13-14):1973-81.   DOI
22 Rhee DK, Marcelino J, Baker M, Gong Y, Smits P, Lefebvre V, Jay GD, Stewart M, Wang H, Warman ML, et al. The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Investig. 2005; 115(3):622-31.   DOI
23 Swann DA, Slayter HS, Silver FH. The molecular structure of lubricating glycoprotein-I, the boundary lubricant for articular cartilage. J Biol Chem. 1981;256(11):5921-5.
24 Radin EL, Swann DA, Weisser PA. Separation of a Hyaluronate-free Lubricating Fraction from Synovial Fluid. Nature. 1970;228(5269):377-8.   DOI
25 Musumeci G, Mobasheri A, Trovato FM, Szychlinska MA, Graziano AC, Lo Furno D, Avola R, Mangano S, Giuffrida R, Cardile V. Biosynthesis of collagen I, II, RUNX2 and lubricin at different time points of chondrogenic differentiation in a 3D in vitro model of human mesenchymal stem cells derived from adipose tissue. Acta Histochem. 2014;116(8):1407-17.   DOI
26 Nakagawa Y, Muneta T, Otabe K, Ozeki N, Mizuno M, Udo M, Saito R, Yanagisawa K, Ichinose S, Koga H, et al. Cartilage Derived from Bone Marrow Mesenchymal Stem Cells Expresses Lubricin In Vitro and In Vivo. PLoS One. 2016;11(2):e0148777.   DOI
27 Jones AR, Flannery CR. Bioregulation of lubricin expression by growth factors and cytokines. Eur Cell Mater. 2007;13:40-5. discussion 45   DOI
28 Jay GD, Harris DA, Cha CJ. Boundary lubrication by lubricin is mediated by O-linked beta (1-3) Gal-GalNAc oligosaccharides. Glycoconj J. 2001;18(10):807-15.   DOI
29 Zappone B, Ruths M, Greene GW, Jay GD, Israelachvili JN. Adsorption, lubrication, and wear of lubricin on model surfaces: polymer brush-like behavior of a glycoprotein. Biophys J. 2007;92(5):1693-708.   DOI
30 Jay GD, Britt DE, Cha CJ. Lubricin is a product of megakaryocyte stimulating factor gene expression by human synovial fibroblasts. J Rheumatol. 2000; 27(3):594-600.
31 Jay GD. Characterization of a bovine synovial fluid lubricating factor. I. Chemical, surface activity and lubricating properties. Connect Tissue Res. 1992;28(1-2):71-88.   DOI
32 Schaefer DB, Wendt D, Moretti M, Jakob M, Jay GD, Heberer M, Martin I. Lubricin reduces cartilage-cartilage integration. Biorheology. 2004;41(3-4): 503-8.
33 Klein J. Molecular mechanisms of synovial joint lubrication. Proceedings of the Institution of Mechanical Engineers, Part J Journal of Engineering Tribology. 2006;220(8):691-710.   DOI
34 Chang DP, Abu-Lail NI, Guilak F, Jay GD, Zauscher S. Conformational mechanics, adsorption, and normal force interactions of lubricin and hyaluronic acid on model surfaces. Langmuir. 2008;24(4):1183-93.   DOI
35 Andresen Eguiluz RC, Cook SG, Brown CN, Wu F, Pacifici NJ, Bonassar LJ, Gourdon D. Fibronectin mediates enhanced wear protection of lubricin during shear. Biomacromolecules. 2015;
36 Van Klinken BJ, Dekker J, Buller HA, Einerhand AW. Mucin gene structure and expression: protection vs. adhesion. Am J Physiol Gastrointest Liver Physiol. 1995;269(5):G613-27.   DOI
37 Liu G, Cai M, Zhou F, Liu W. Charged polymer brushes-grafted hollow silica nanoparticles as a novel promising material for simultaneous joint lubrication and treatment. J Phys Chem B. 2014;118(18):4920-31.   DOI
38 Tairy O, Kampf N, Driver MJ, Armes SP, Klein J. Dense, Highly Hydrated Polymer Brushes via Modified Atom-Transfer-Radical-Polymerization: Structure, Surface Interactions, and Frictional Dissipation. Macromolecules. 2015;48(1):140-51.   DOI
39 Lawrence A, Xu X, Bible MD, Calve S, Neu CP, Panitch A. Synthesis and characterization of a lubricin mimic (mLub) to reduce friction and adhesion on the articular cartilage surface. Biomaterials. 2015;73:42-50.   DOI
40 Musumeci G, Loreto C, Carnazza ML, Coppolino F, Cardile V, Leonardi R. Lubricin is expressed in chondrocytes derived from osteoarthritic cartilage encapsulated in poly (ethylene glycol) diacrylate scaffold. Eur J Histochem. 2011;55(3):e31.   DOI
41 Yu Y, Brouillette MJ, Seol D, Zheng H, Buckwalter JA, Martin JA. Use of recombinant human stromal cell-derived factor 1alpha-loaded fibrin/hyaluronic acid hydrogel networks to achieve functional repair of fullthickness bovine articular cartilage via homing of chondrogenic progenitor cells. Arthritis Rheumatol. 2015;67(5):1274-85.   DOI
42 Singh A, Corvelli M, Unterman SA, Wepasnick KA, McDonnell P, Elisseeff JH. Enhanced lubrication on tissue and biomaterial surfaces through peptidemediated binding of hyaluronic acid. Nat Mater. 2014;13(10):988-95.   DOI
43 Seiffert D. The Cell Adhesion Domain in Plasma Vitronectin Is Cryptic. J Biol Chem. 1997;272(21):13705-10.   DOI
44 Sakata R, McNary SM, Miyatake K, Lee CA, Van den Bogaerde JM, Marder RA, Reddi AH. Stimulation of the superficial zone protein and lubrication in the articular cartilage by human platelet-rich plasma. Am J Sports Med. 2015; 43(6):1467-73.   DOI
45 Simmons PJ, Levesque J-P, Haylock DN. Mucin-like Molecules as Modulators of the Survival and Proliferation of Primitive Hematopoietic Cells. Ann N Y Acad Sci. 2006;938(1):196-207.   DOI
46 Velcich A, Yang W, Heyer J, Fragale A, Nicholas C, Viani S, Kucherlapati R, Lipkin M, Yang K, Augenlicht L. Colorectal cancer in mice genetically deficient in the mucin Muc2. Science. 2002;295(5560):1726-9.   DOI
47 Deng G, Curriden SA, Hu G, Czekay RP, Loskutoff DJ. Plasminogen activator inhibitor-1 regulates cell adhesion by binding to the somatomedin B domain of vitronectin. J Cell Physiol. 2001;189(1):23-33.   DOI
48 Schvartz I, Seger D, Shaltiel S. Vitronectin. Int J Biochem Cell Biol. 1999;31(5):539-44.   DOI
49 Waller KA, Zhang LX, Elsaid KA, Fleming BC, Warman ML, Jay GD. Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis. Proc Natl Acad Sci U S A. 2013;110(15):5852-7.   DOI
50 Chang DP, Abu-Lail NI, Coles JM, Guilak F, Jay GD, Zauscher S. Friction Force Microscopy of Lubricin and Hyaluronic Acid between Hydrophobic and Hydrophilic Surfaces. Soft Matter. 2009;5(18):3438-45.   DOI
51 Jay GD, Torres JR, Warman ML, Laderer MC, Breuer KS. The role of lubricin in the mechanical behavior of synovial fluid. Proc Natl Acad Sci U S A. 2007; 104(15):6194-9.   DOI
52 Young AA, McLennan S, Smith MM, Smith SM, Cake MA, Read RA, Melrose J, Sonnabend DH, Flannery CR, Little CB. Proteoglycan 4 downregulation in a sheep meniscectomy model of early osteoarthritis. Arthritis Res Ther. 2006;8(2):R41.   DOI
53 Chen T, Hilton MJ, Brown EB, Zuscik MJ, Awad HA. Engineering superficial zone features in tissue engineered cartilage. Biotechnol Bioeng. 2013;110(5): 1476-86.   DOI
54 Raviv U, Giasson S, Kampf N, Gohy JF, Jerome R, Klein J. Lubrication by charged polymers. Nature. 2003;425(6954):163-5.   DOI
55 Englert C, McGowan KB, Klein TJ, Giurea A, Schumacher BL, Sah RL. Inhibition of integrative cartilage repair by proteoglycan 4 in synovial fluid. Arthritis Rheum. 2005;52(4):1091-9.   DOI
56 Zappone B, Greene GW, Oroudjev E, Jay GD, Israelachvili JN. Molecular aspects of boundary lubrication by human lubricin: effect of disulfide bonds and enzymatic digestion. Langmuir. 2008;24(4):1495-508.   DOI
57 Bansil R, Stanley E, LaMont JT. Mucin biophysics. Annu Rev Physiol. 1995;57: 635-57.   DOI
58 Banquy X, Burdynska J, Lee DW, Matyjaszewski K, Israelachvili J. Bioinspired bottle-brush polymer exhibits low friction and Amontons-like behavior. J Am Chem Soc. 2014;136(17):6199-202.   DOI
59 Dedinaite A. Biomimetic lubrication. Soft Matter. 2012;8(2):273-84.   DOI
60 Yang J, Chen H, Xiao S, Shen M, Chen F, Fan P, Zhong M, Zheng J. Salt-Responsive Zwitterionic Polymer Brushes with Tunable Friction and Antifouling Properties. Langmuir. 2015;
61 Liu X, Dedinaite A, Rutland M, Thormann E, Visnevskij C, Makuska R, Claesson PM. Electrostatically anchored branched brush layers. Langmuir. 2012;28(44):15537-47.   DOI
62 Seekell RP 3rd, Dever R, Zhu Y. Control hydrogel-hyaluronic acid aggregation toward the design of biomimetic superlubricants. Biomacromolecules. 2014;15(7):2760-8.   DOI
63 Seror J, Merkher Y, Kampf N, Collinson L, Day AJ, Maroudas A, Klein J. Articular cartilage proteoglycans as boundary lubricants: structure and frictional interaction of surface-attached hyaluronan and hyaluronan-aggrecan complexes. Biomacromolecules. 2011;12(10):3432-43.   DOI
64 Grad S, Gogolewski S, Alini M, Wimmer MA. Effects of simple and complex motion patterns on gene expression of chondrocytes seeded in 3D scaffolds. Tissue Eng. 2006;12(11):3171-9.   DOI
65 Kamiya T, Tanimoto K, Tanne Y, Lin YY, Kunimatsu R, Yoshioka M, Tanaka N, Tanaka E, Tanne K. Effects of mechanical stimuli on the synthesis of superficial zone protein in chondrocytes. J Biomed Mater Res A. 2010;92(2):801-5.
66 Ogawa H, Kozhemyakina E, Hung HH, Grodzinsky AJ, Lassar AB. Mechanical motion promotes expression of Prg4 in articular cartilage via multiple CREBdependent, fluid flow shear stress-induced signaling pathways. Genes Dev. 2014;28(2):127-39.   DOI
67 Grad S, Lee CR, Gorna K, Gogolewski S, Wimmer MA, Alini M. Surface motion upregulates superficial zone protein and hyaluronan production in chondrocyteseeded three-dimensional scaffolds. Tissue Eng. 2005;11(1-2):249-56.   DOI
68 Wang N, Grad S, Stoddart MJ, Niemeyer P, Sudkamp NP, Pestka J, Alini M, Chen J, Salzmann GM. Bioreactor-Induced Chondrocyte Maturation Is Dependent on Cell Passage and Onset of Loading. Cartilage. 2013;4(2):165-76.   DOI
69 Hilz FM, Ahrens P, Grad S, Stoddart MJ, Dahmani C, Wilken FL, Sauerschnig M, Niemeyer P, Zwingmann J, Burgkart R, et al. Influence of extremely low frequency, low energy electromagnetic fields and combined mechanical stimulation on chondrocytes in 3-D constructs for cartilage tissue engineering. Bioelectromagnetics. 2014;35(2):116-28.   DOI
70 Zhang L, Spector M. Comparison of three types of chondrocytes in collagen scaffolds for cartilage tissue engineering. Biomed Mater. 2009;4(4):045012.   DOI
71 Lohan A, Marzahn U, El Sayed K, Haisch A, Muller RD, Kohl B, Stolzel K, Ertel W, John T, Schulze-Tanzil G. Osteochondral articular defect repair using auricle-derived autologous chondrocytes in a rabbit model. Ann Anat. 2014;196(5):317-26.   DOI
72 Bedi A, Feeley BT, Williams RJ 3rd. Management of articular cartilage defects of the knee. J Bone Joint Surg Am. 2010;92(4):994-1009.   DOI
73 Kim IL, Mauck RL, Burdick JA. Hydrogel design for cartilage tissue engineering: a case study with hyaluronic acid. Biomaterials. 2011;32(34):8771-82.   DOI
74 Ciullini Mannurita S, Vignoli M, Bianchi L, Kondi A, Gerloni V, Breda L, Ten Cate R, Alessio M, Ravelli A, Falcini F, et al. CACP syndrome: identification of five novel mutations and of the first case of UPD in the largest European cohort. Eur J Hum Genet. 2014;22(2):197-201.   DOI
75 Galle J, Bader A, Hepp P, Grill W, Fuchs B, Kas JA, Krinner A, MarquaB B, Muller K, Schiller J, et al. Mesenchymal Stem Cells in Cartilage Repair: State of the Art and Methods to monitor Cell Growth, Differentiation and Cartilage Regeneration. Curr Med Chem. 2010;17(21):2274-91.   DOI
76 Chung C, Burdick JA. Engineering cartilage tissue. Adv Drug Deliv Rev. 2008; 60(2):243-62.   DOI
77 Bobick BE, Chen FH, Le AM, Tuan RS. Regulation of the chondrogenic phenotype in culture. Birth Defects Res C Embryo Today. 2009;87(4):351-71.   DOI
78 Schinagl RM, Ting MK, Price JH, Sah RL. Video microscopy to quantitate the inhomogeneous equilibrium strain within articular cartilage during confined compression. Ann Biomed Eng. 1996;24(4):500-12.   DOI
79 Das S, Banquy X, Zappone B, Greene GW, Jay GD, Israelachvili JN. Synergistic interactions between grafted hyaluronic acid and lubricin provide enhanced wear protection and lubrication. Biomacromolecules. 2013;14(5):1669-77.   DOI
80 Becerra J, Andrades JA, Guerado E, Zamora-Navas P, Lopez-Puertas JM, Reddi AH. Articular cartilage: structure and regeneration. Tissue Eng Part B Rev. 2010;16(6):617-27.   DOI
81 Wang CCB, Hung CT, Mow VC. An analysis of the effects of depthdependent aggregate modulus on articular cartilage stress-relaxation behavior in compression. J Biomech. 2001;34(1):75-84.   DOI
82 Zhulina EB, Rubinstein M. Lubrication by Polyelectrolyte Brushes. Macromolecules. 2014;47(16):5825-38.   DOI
83 Wang M, Liu C, Thormann E, Dedinaite A. Hyaluronan and phospholipid association in biolubrication. Biomacromolecules. 2013;14(12):4198-206.   DOI
84 Yu J, Banquy X, Greene GW, Lowrey DD, Israelachvili JN. The boundary lubrication of chemically grafted and cross-linked hyaluronic acid in phosphate buffered saline and lipid solutions measured by the surface forces apparatus. Langmuir. 2012;28(4):2244-50.   DOI
85 Raviv U, Giasson S, Kampf N, Gohy JF, Jerome R, Klein J. Normal and frictional forces between surfaces bearing polyelectrolyte brushes. Langmuir. 2008;24(16):8678-87.   DOI
86 Chen M, Briscoe WH, Armes SP, Klein J. Lubrication at physiological pressures by polyzwitterionic brushes. Science. 2009;323(5922):1698-701.   DOI
87 Gourdon D, Lin Q, Oroudjev E, Hansma H, Golan Y, Arad S, Israelachvili J. Adhesion and stable low friction provided by a subnanometer-thick monolayer of a natural polysaccharide. Langmuir. 2008;24(4):1534-40.   DOI
88 Lee S, Spencer ND. Materials science. Sweet, hairy, soft, and slippery. Science. 2008;319(5863):575-6.   DOI
89 Liu G, Liu Z, Li N, Wang X, Zhou F, Liu W. Hairy polyelectrolyte brushes-grafted thermosensitive microgels as artificial synovial fluid for simultaneous biomimetic lubrication and arthritis treatment. ACS Appl Mater Interfaces. 2014; 6(22):20452-63.   DOI