Browse > Article
http://dx.doi.org/10.1186/s40824-016-0065-3

Cellulose membrane as a biomaterial: from hydrolysis to depolymerization with electron beam  

Eo, Mi Young (Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University)
Fan, Huan (Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University)
Cho, Yun Ju (Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University)
Kim, Soung Min (Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University)
Lee, Suk Keun (Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University)
Publication Information
Biomaterials Research / v.20, no.4, 2016 , pp. 243-255 More about this Journal
Abstract
The cellulose membrane (CM) is a major component of plant cell walls and is both a chemically and mechanically stable synthetic polymer with many applications for use in tissue engineering. However, due to its dissolution difficulty, there are no known physiologically relevant or pharmaceutically clinical applications for this polymer. Thus, research is underway on controlled and adjusted forms of cellulose depolymerization. To advance the study of applying CM for tissue engineering, we have suggested new possibilities for electron beam (E-beam) treatment of CM. Treatment of CM with an E-beam can modify physical, chemical, molecular and biological properties, so it can be studied continuously to improve its usefulness and to enhance value. We review clinical applications of CM, cellulose binding domains, cellulose crosslinking proteins, conventional hydrolysis of cellulose, and depolymerization with radiation and focus our experiences with depolymerization of E-beam irradiated CM in this article.
Keywords
Cellulose binding domain; Cellulose crosslinking protein; Cellulose membrane (CM); Depolymerization; Electron beam (E-beam) irradiation;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Bouchard J, Methot M, Jordan B. The effects of ionizing radiation on the cellulose of wood free paper. Cellulose. 2006;13:601-10.   DOI
2 Bastidas JC, Venditti R, Pawlak J, Gilbert R, Zauscher S, Kadla JF. Chemical force microscopy of cellulosic fibers. Carbohydr Polym. 2005;62:369-78.   DOI
3 Dourado F, Mota M, Pala H, Gama FM. Effect of cellulase adsorption on the surface and interfacial properties of cellulose. Cellulose. 1999;6:265-82.   DOI
4 Kimura S, Kondo T. Recent progress in cellulose biosynthesis. J Plant Res. 2002;115:297-302.   DOI
5 Jiang B, Wu Z, Zhao H, Tang F, Lu J, Wei Q, et al. Electron beam irradiation modification of collagen membrane. Biomaterials. 2006;27:15-23.   DOI
6 Henniges U, Okubayashi U, Rosenau T, Potthast A. Irradiation of cellulosic pulps: understanding its impact on cellulose oxidation. Biomacromolecules. 2012;13:4171-8.   DOI
7 Dahlin C, Linde A, Gottlow J, Nyman S. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg. 1988;81:672-6.   DOI
8 Dahlin C, Sennerby L, Lekholm U, Linde A, Nyman S. Generation of new bone around titanium implants using a membrane technique: an experimental study in rabbits. Int J Oral Maxillofac Implants. 1989;4:19-25.
9 Kim SM, Eo MY, Park JM, Myoung H, Lee JH, Park YI, et al. Basic structure and composition analysis of sea squirt originated cellulose membrane. Tissue Engineering and Regenerative Medicine. 2010;7:191-201.
10 Xu CX, Jin H, Chung YS, Shin JY, Woo MA, Lee KH, et al. Chondroitin sulfate extracted from the Styela clava tunic suppresses TNF-a-induced expression of inflammatory factors, VCAM-1 and iNOS by blocking Akt/NF-jB signal in JB6 cellsacrophage-mediated biodegradation of poly(DL-lactide-coglycolide) in vitro. Cancer Lett. 2008;264:93-100.   DOI
11 Imamura R, Ueno T, Murakami K. Depolymerization of cellulose by electron beam irradiation. Bull Inst Chem Res Kyoto Univ. 1972;50:51-63.
12 Emerson RW, Crandall BG. Method for decontamination of a liquid of gaseous environment. US patent. 1998;5:843-375.
13 Fuglsang CC, Tsuchiya R. Cellulose binding domains (CBDs) for oral care products. US patent. 2001;6:264,925.
14 Battista OA. Hydrolysis and crystallization of cellulose. Ind Eng Chem. 1950; 42:502-7.   DOI
15 Delmer DP. Cellulose biosynthesis: exciting times for a difficult field of study. Annu Rev Plant Physiol Plant Mol Biol. 1999;50:245-76.   DOI
16 Raeder U, Broda P. Comparison of the lignin-degrading white rot fungi Phanerochaete chrysosporium and Sporotrichum pulverulentum at the DNA level. Curr Genet. 1984;8:499-506.   DOI
17 Highley TL, Kirk TK, Ibach R. Effect of brown-rot fungi on cellulose. Biodeterioration Resear. 1989;2:511-25.
18 Matsuhashi S, Kume T, Hashimoto S, Awang MR. Effect of gamma irradiation on enzymatic digestion of oil palm empty fruit bunch. J Sci Food Agric. 1995;69:265-7.   DOI
19 Green IIIF, Highley TL. Mechanism of brown-rot decay: paradigm or paradox. Int Biodeterior Biodegradation. 1997;39:113-24.   DOI
20 Malek MA, Chowdhury NA, Matsuhashi S, Hashimoto S, Kume T. Radiation and fermentation treatment of cellulosic wastes. Mycoscience. 1994;35:95-8.   DOI
21 Laguardia L, Vassallo E, Cappitelli E, Mesto E, Cremona A, Sorlini C, et al. Investigation of the effects of plasma treatments on biodeteriorated ancient paper. Appl Surf Sci. 2005;252:1159-66.   DOI
22 Dewan M, Bhowmick B, Sarkar G, Rana D, Bain MK, Bhowmik M, et al. Effect of methyl cellulose on gelation behavior and drug release from poloxamer based ophthalmic formulations. Int J Biol Macromol. 2015;72:706-10.   DOI
23 Park JS, Lee JH, Han CS, Chung DW, Kim GY. Effect of hyaluronic acidcarboxymethylcellulose solution on perineural scar formation after sciatic nerve repair in rats. Clin Orthop Surg. 2011;3:315-2.   DOI
24 Sahoo SK, Behera A, Patil SV, Panda SK. Formulation, in vitro drug release study and anticancer activity of 5-fluorouracil loaded gellan gum microbeads. Acta Pol Pharm. 2013;70:123-7.
25 Park CH, Jeong L, Cho D, Kwon OH, Park WH. Effect of methylcellulose on the formation and drug release behavior of silk fibroin hydrogel. Carbohydr Polym. 2013;98:1179-85.   DOI
26 Reid ML, Brown MB, Moss GP, Jones SA. An investigation into solventmembrane interactions when assessing drug release from organic vehicles using regenerated cellulose membranes. J Pharm Pharmacol. 2008;60:1139-47.   DOI
27 Wu C, Murtaza G, Yameen MA, Aamir MN, Akhtar M, Zhao Y. Permeation study through bacterial cellulose membrane. Acta Pol Pharm. 2014;71:297-300.
28 Thombre AG, Cardinal JR, DeNoto AR, Herbig SM, Smith KL. Asymmetric membrane capsules for osmotic drug delivery: I. Development of a manufacturing process. J Control Release. 1999;57:55-64.   DOI
29 Frisbee SE, Mehta K, McGinity J. Processing factors that influence the in vitro and in vivo performance of film-coated drug delivery systems. Drug Deliv. 2002;2:72-6.
30 Digenis GA, Gold TB, Shah VP. Cross-linking of gelatin capsules and its relevance to their in vitro-in vivo performance. J Pharm Sci. 1994;83:915-21.   DOI
31 Bora U, Sharma P, Kannan K, Nahar P. Photoreactive cellulose membrane-a novel matrix for covalent immobilization of biomolecules. J Biotechnol. 2006;126:220-9.   DOI
32 Mironi-Harpaz I, Wang DY, Venkatraman S, Seliktar D. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity. Acta Biomater. 2013;8:1838-48.
33 Singh B, Pal L. Radiation crosslinking polymerization of sterculia polysaccharide-PVA-PVP for making hydrogel wound dressings. Int J Biol Macromol. 2011;48:501-10.   DOI
34 Johansson LS, Campbell JM, Fardim P, Anette H, Boisvert J, Ernstsson M. An XPS round robin investigation on analysis of wood pulp fibres and filter paper. Surf Sci. 2005;584:126-32.   DOI
35 Pina ME, Sousa AT. Application of hydroalcoholic solutions of formaldehyde in preparation of acetylsalicylic acid gastro-resistant capsules. Drug Dev Ind Pharm. 2002;28:443-9.   DOI
36 Kim SM, Fan H, Cho YJ, Eo MY, Park JH, Kim BN, et al. Electron beam effect on biomaterials I; focusing on bone graft materials. Biomaterials Research. 2015;19:10.   DOI
37 Kim SM, Eo MY, Kang JY, Myoung H, Choi EK, Lee SK, et al. Bony regeneration effect of electron-beam irradiated hydroxyapatite and tricalcium phosphate mixtures with 7 to 3 ratio in the calvarial defect model of rat. Tissue Engineering Regenerative Medicine. 2013;9:24-32.
38 Park JM, Kim SM, Kim MK, Park YW, Myoung H, Lee BC, et al. Effect of electron-beam irradiation on the artificial bone substitutes composed of hydroxyapatite and tricalcium phosphate mixtures with type I collagen. J Korean Assoc Maxillofac Plast Reconstr Surg. 2013;35:38-50.
39 Bussemer T, Bodmeier R. Formulation parameters affecting the performance of coated gelatin capsules with pulsatile release profiles. Int J Pharm. 2003; 267:59-68.   DOI
40 Dahl TC, Sue IL, Yum A. The effect of pancreatin on the dissolution performance of gelatin-coated tablets exposed to high-humidity conditions. Pharm Res. 1991;8:412-4.   DOI
41 Serafica G, Mormino R, Bungay H. Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol. 2002;58:756-60.   DOI
42 Fernandes JMB, Gil MH, Castro JAAM. Hornification-its origin and interpretation in wood pulps. Wood Sci Technol. 2004;37:489-94.   DOI
43 Spence KL, Venditti RA, Habibi Y, Rojas OJ, Pawlak JJ. The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol. 2010;101:5961-8.   DOI
44 Devasahayam S, Hill DJT, Connell JW. Effect of electron beam radiolysis on mechanical properties of high performance polyimides. A comparative study of transparent polymer films. High Performance Polymers. 2005;17: 547-59.   DOI
45 Linder M, Nevanen T, Soderholm L, Bengs O, Teeri TT. Improved immobilization of fusion proteins via cellulose-binding domains. Biotechnol Bioeng. 1998;60:642-7.   DOI
46 Bolam DN, Xie H, Pell G, Hogg D, Galbraith G, Henrissat B, et al. X4 modules represent a new family of carbohydrate-binding modules that display novel properties. J Biol Chem. 2004;28:22953-63.
47 Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, et al. Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials. 2005;26:419-31.   DOI
48 Levy I, Shoseyov O. Cellulose-binding domains: biotechnological applications. Biotechnol Adv. 2002;20:191-213.   DOI
49 Laurell B, Foll E. Electron-beam accelerators for new applications. RadTech Europe 2011 Exhibition & Conference for Radiation Curing. Electron Crosslinking AB. 2011.
50 Kim SM, Lee JH, Jo JA, Lee SC, Lee SK. Development of a bioactive cellulose membrane from sea squirt skin for bone regeneration-a preliminary research. J Kor Oral Maxillofac Surg. 2005;31:440-53.
51 Sokolnicki A, Fisher R, Harrah T, Kaplan D. Permeability of bacterial cellulose membranes. J Membrane Science. 2006;272:15-27.   DOI
52 Lee JH, Brown Jr RM, Kuga S, Shoda S, Kobayashi S. Assembly of synthetic cellulose I. PNAS. 1994;91:7425-9.   DOI
53 Kokorevics A, Gravitis J. Cellulose depolymerization to glucose and other water soluble polysaccharides by shear deformation and high pressure treatment. Glycononj J. 1997;14:669-76.   DOI
54 Kim SM, Sep BM, Lee JH, Choung PH, Lee SK. Clinical application and development of guided bone regenerative membrane research. Tissue Engineering and Regenerative Medicine. 2008;5:959-73.
55 Kim SM, Park JM, Kang TY, Kim YS, Lee SK. Purification of squirt cellulose membrane from the cystic tunic of Styela clava and identification of its osteoconductive effect. Cellulose. 2013;20:655-73.   DOI
56 Kim SM, Woo KM, Song N, Eo MY, Cho HJ, Park JH, et al. Electron beam irradiation to the Styela clava derived cellulose membrane. Polymer. 2015;39:1-9.
57 Chundawat SP, Bellesia G, Uppugundla N, da Costa SL, Gao D, Cheh AM, et al. Restucturing the crystalline cellulose hydrogen bond network enhances its depolymerization rate. J Am Chem Soc. 2011;133:11163-74.   DOI
58 Reinikainen T, Ruohonen L, Nevanen T, Laaksonen L, Kraulis P, Jones TA, et al. Investigation of the function of mutated cellulose-binding domains of Trichoderma reesei cellobiohydrase I. Proteins. 1992;14:475-82.   DOI
59 Linder M, Salovuori I, Ruohonen L, Teeri TT. Characterization of a double cellulose-binding domain. Synergistic high affinity binding to crystalline cellulose. J Biol Chem. 1996;271:21268-72.   DOI
60 Linder M, Mattinen ML, Kontteli M, Lindeberg G, Stahlberg J, Drakenberg T, et al. Identification of functionally important amino acids in the cellulosebinding domain of Trichoderma reesei cellobiohydrolae I. Protein Sci. 1995; 4:1056-64.   DOI
61 Brun E, Johnson PE, Creagh AL, Tomme P, Webster P, Haynes CA, et al. Structure and binding specificity of the second N-terminal cellulose-binding domain from Cellulomonas fimi endoglucanase C. Biochemistry. 2000;39:2445-58.   DOI
62 Jervis EJ, Haynes CA, Kilburn DG. Surface diffusion of cellulases and their isolated binding domains on cellulose. J Biol Chem. 1997;272:24016-23.   DOI
63 Shoseyov O, Shani Z, Levy I. Carbohydrate binding modules: biochemical properties and novel applications. Microbiol Mol Biol Rev. 2006;70:283-95.   DOI
64 Ibrahim NA, Amr A, Eid BM, Mohamed ZE, Fahmy HM. Poly(acrylic acid)/poly(ethylene glycol) adduct for attaining multifunctional cellulosic fabrics. Carbohydr Polym. 2012;89:648-60.   DOI
65 Wang AA, Mulchandani A, Chen W. Whole-cell immonilization using cell surface-exposed cellulose-binding domain. Biotechnol Prog. 2001;17:407-11.   DOI
66 Degani O, Gepstein S, Dosoretz CG. A new method for measuring scouring efficiency of natural fibers based on the cellulose-binding domain-betaglucuronidase fused protein. J Biotechnol. 2004;107:265-73.   DOI