Browse > Article
http://dx.doi.org/10.1186/s40824-016-0054-6

Effects of poly(L-lactide-ε-caprolactone) and magnesium hydroxide additives on physico-mechanical properties and degradation of poly(L-lactic acid)  

Kang, Eun Young (Center for Biomaterials, Korea Institute of Science and Technology)
Lih, Eugene (Center for Biomaterials, Korea Institute of Science and Technology)
Kim, Ik Hwan (Department of Biological Science, Korea University)
Joung, Yoon Ki (Center for Biomaterials, Korea Institute of Science and Technology)
Han, Dong Keun (Center for Biomaterials, Korea Institute of Science and Technology)
Publication Information
Biomaterials Research / v.20, no.1, 2016 , pp. 37-45 More about this Journal
Abstract
Background: Biodegradable poly(L-lactic acid) (PLLA) is one of the most widely used polymer in biomedical devices, but it still has limitations such as inherent brittleness and acidic degradation products. In this work, PLLA blends with poly($L-lactide-{\varepsilon}-caprolactone$) (PLCL) and $Mg(OH)_2$ were prepared by the thermal processing to improve their physico-mechanical and thermal properties. In addition, the neutralizing effect of $Mg(OH)_2$ was evaluated by degradation study. Results: The elongation of PLLA remarkably increased from 3 to 164.4 % and the glass transition temperature ($T_g$) of PLLA was slightly reduced from 61 to $52^{\circ}C$ by adding PLCL additive. $Mg(OH)_2$ in polymeric matrix not only improved the molecular weight reduction and mechanical strength of PLLA, but also neutralized the acidic byproducts generated during polyester degradation. Conclusions: Therefore, the results demonstrated that the presence of PLCL and $Mg(OH)_2$ additives in PLLA matrix could prevent the thermal decomposition and control degradation behavior of polyester.
Keywords
Poly(L-lactic acid); Poly($L-lactide-{\varepsilon}-caprolactone$); Magnesium hydroxide; Thermal decomposition; Neutralization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Sivalingam G, Karthik R, Madras G. Kinetics of thermal degradation of poly (${\varepsilon}$-caprolactone). J Anal Appl Pyrolysis. 2003;70:631-47.   DOI
2 Douglas JF. A dynamic measure of order in structural glasses. Comput Mater Sci. 1995;4:292-308.   DOI
3 Seidel A. Processing and finishing of polymeric materials Vol. 2. New Jersey, NJ: Wiley; 2011.
4 Lim L-T, Auras R, Rubino M. Processing technologies for poly (lactic acid). Prog Polym Sci. 2008;33:820-52.   DOI
5 Draye A-C, Persenaire O, Brozek J, Roda J, Kosek T, Dubois P. Thermogravimetric analysis of poly (${\varepsilon}$-caprolactam) and poly [(${\varepsilon}$-caprolactam)-co-(${\varepsilon}$-caprolactone)] polymers. Polymer. 2001;42:8325-32.   DOI
6 Persenaire O, Alexandre M, Degee P, Dubois P. Mechanisms and kinetics of thermal degradation of poly (${\varepsilon}$-caprolactone). Biomacromolecules. 2001;2:288-94.   DOI
7 Pampaloni F, Reynaud EG, Stelzer EH. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007;8:839-45.   DOI
8 Hutmacher DW. Biomaterials offer cancer research the third dimension. Nat Mater. 2010;9:90-3.   DOI
9 DesRochers TM, Palma E, Kaplan DL. Tissue-engineered kidney disease models. Adv Drug Deliv Rev. 2014;69:67-80.
10 Garrod M, San Chau DY. An Overview of Tissue Engineering as an Alternative for Toxicity Assessment. J Pharm Pharm Sci. 2016;19:31-71.   DOI
11 Van der Meer S, De Wijn J, Wolke J. The influence of basic filler materials on the degradation of amorphous D-and L-lactide copolymer. J Mater Sci Mater Med. 1996;7:359-61.   DOI
12 Gibbons D. Tissue response to resorbable synthetic polymers. Degradation phenomena on polymeric biomaterials: Springer; 1992. p. 97-105.
13 Kopinke F-D, Remmler M, Mackenzie K, Moder M, Wachsen O. Thermal decomposition of biodegradable polyesters-II. Poly (lactic acid). Polym Degrad Stab. 1996;53:329-42.   DOI
14 Rasal RM, Hirt DE. Micropatterning of covalently attached biotin on poly (lactic acid) film surfaces. Macromol Biosci. 2009;9:989-96.   DOI
15 Auras R, Harte B, Selke S. An overview of polylactides as packaging materials. Macromol Biosci. 2004;4:835-64.   DOI
16 Vink ET, Rabago KR, Glassner DA, Gruber PR. Applications of life cycle assessment to $NatureWorks^{TM}$ polylactide (PLA) production. Polym Degrad Stab. 2003;80:403-19.   DOI
17 Yu H, Huang N, Wang C, Tang Z. Modeling of poly (L‐lactide) thermal degradation: Theoretical prediction of molecular weight and polydispersity index. J Appl Polym Sci. 2003;88:2557-62.   DOI
18 Jamshidi K, Hyon S-H, Ikada Y. Thermal characterization of polylactides. Polymer. 1988;29:2229-34.   DOI
19 Amid P. Classification of biomaterials and their related complications in abdominal wall hernia surgery. Hernia. 1997;1:15-21.   DOI
20 Agrawal CM, Athanasiou KA. Technique to control pH in vicinity of biodegrading PLA-PGA implants. J Biomed Mater Res. 1997;38:105-14.   DOI
21 Linhart W, Peters F, Lehmann W, Schwarz K, Schilling AF, Amling M, et al. Biologically and chemically optimized composites of carbonated apatite and polyglycolide as bone substitution materials. J Biomed Mater Res. 2001;54:162-71.   DOI
22 Khankrua R, Pivsa-Art S, Hiroyuki H, Suttiruengwong S. Effect of chain extenders on thermal and mechanical properties of poly (lactic acid) at high processing temperatures: Potential application in PLA/Polyamide 6 blend. Polym Degrad Stab. 2014;108:232-40.   DOI
23 Wang L, Ma W, Gross R, McCarthy S. Reactive compatibilization of biodegradable blends of poly (lactic acid) and poly (${\varepsilon}$-caprolactone). Polym Degrad Stab. 1998;59:161-8.   DOI
24 Lee S, Lee JW. Characterization and processing of biodegradable polymer blends of poly (lactic acid) with poly (butylene succinate adipate). Korea Aust Rheol J. 2005;17:71-7.
25 Park JW, Im SS. Phase behavior and morphology in blends of poly (L‐lactic acid) and poly (butylene succinate). J Appl Polym Sci. 2002;86:647-55.   DOI
26 Li Q, Yoon J-S, Chen G-X. Thermal and biodegradable properties of poly (L-lactide)/poly (${\varepsilon}$-Caprolactone) compounded with functionalized organoclay. J Polym Environ. 2011;19:59-68.   DOI
27 Wu D, Zhang Y, Zhang M, Yu W. Selective localization of multiwalled carbon nanotubes in poly (${\varepsilon}$-caprolactone)/polylactide blend. Biomacromolecules. 2009;10:417-24.   DOI
28 Gu X-N, Li S-S, Li X-M, Fan Y-B. Magnesium based degradable biomaterials: A review. Front Mater Sci. 2014;8:200-18.   DOI
29 Kum CH, Cho Y, Joung YK, Choi J, Park K, Seo SH, et al. Biodegradable poly (l-lactide) composites by oligolactide-grafted magnesium hydroxide for mechanical reinforcement and reduced inflammation. J Mater Chem B. 2013;1:2764-72.   DOI
30 Wen W, Luo B, Qin X, Li C, Liu M, Ding S, et al. Strengthening and toughening of poly (L-lactide) composites by surface modified MgO whiskers. Appl Surf Sci. 2015;332:215-23.   DOI
31 Coltelli M-B, Toncelli C, Ciardelli F, Bronco S. Compatible blends of biorelated polyesters through catalytic transesterification in the melt. Polym Degrad Stab. 2011;96:982-90.   DOI
32 Kaci M, Benhamida A, Zaidi L, Touati N, Remili C. Photodegradation of Poly (Lactic Acid)/Organo-Modified Clay Nanocomposites under Natural Weathering Exposure. Ecosustainable Polymer Nanomaterials for Food Packaging: Innovative Solutions, Characterization Needs, Safety and Environmental Issues. 2013: 281
33 Ray SS, Okamoto M. Biodegradable polylactide and its nanocomposites: opening a new dimension for plastics and composites. Macromol Rapid Commun. 2003;24:815-40.   DOI
34 Zhang Z, Feng S-S. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly (lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Biomaterials. 2006;27:4025-33.   DOI
35 Scoponi M, Pradella F, Kaczmarek H, Amadelli R, Carassiti V. A reappraisal of the photo-oxidation mechanism at short and long wavelengths for poly (2, 6-dimethyl-1, 4-phenylene oxide). Polymer. 1996;37:903-16.   DOI
36 Li AD, Sun Z, Zhou M, Xu X, Ma J, Zheng W, et al. Electrospun Chitosangraft-PLGA nanofibres with significantly enhanced hydrophilicity and improved mechanical property. Colloids Surf B. 2013;102:674-81.   DOI