Browse > Article
http://dx.doi.org/10.1186/s40824-015-0038-y

Guided bone regeneration using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-cross-linked type-I collagen membrane with biphasic calcium phosphate at rabbit calvarial defects  

Park, Jin-Young (Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry)
Jung, Im-Hee (Department of Dental hygiene, College of Health Sciences, Eulji University)
Kim, You-Kyoung (Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry)
Lim, Hyun-Chang (Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry)
Lee, Jung-Seok (Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry)
Jung, Ui-Won (Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry)
Choi, Seong-Ho (Department of periodontology, Research institute of periodontal regeneration, Yonsei University College of Dentistry)
Publication Information
Biomaterials Research / v.19, no.3, 2015 , pp. 154-163 More about this Journal
Abstract
Background: In-vitro and animal studies using EDC cross-linked membranes have shown great resistance to enzymatic digestion as well as low cytotoxicity, and indicated its potential expediency as a barrier membrane for guided bone regeneration (GBR). The purpose of this study was to evaluate the efficacy, biocompatibility and degradation kinetics of a novel 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC)-cross-linked type I collagen membrane for regeneration of rabbit calvarial defects. EDC cross-linked type I collagen membrane and macroporous biphasic calcium phosphate (MBCP) consisting of 60 % hydroxyapatite and 40 % ${\beta}$-tricalcium phosphate were used in this study. Four circular defects ($\phi$ = 8 mm) were created in each calvarium of 12 male white rabbits. The experimental groups randomly allocated to the defects were as follows - (1) sham control, (2) EDC-cross-linked collagen membrane (EDC membrane), (3) bone graft (BG), and (4) bone graft with collagen membrane (B-EDC membrane). Specimens were harvested at 2 weeks (n=6) and 8 weeks (n = 6) postoperatively for observational histology and histometrical analysis. Result: The histologic observation showed close adaptation of the EDC membrane to the defect perimeters along with vascularization of the membrane at 2 weeks. Direct apposition of new bone on to the collagen matrix could be observed displaying adequate tissue integration. Collapsing of the central portion of the membrane could be seen in the EDC membrane group, and both BG and B-EDC membrane groups showed greater total augmented area and new bone area than the EDC membrane group. The membrane was largely unresorbed at 2 weeks; and at 8 weeks the overall shape of the membrane was still maintained suggesting sustained barrier function at 8 weeks. Conclusion: Within the limits of this study, it may be concluded that EDC-cross-linked collagen membrane is a safe biomaterial with adequate tissue integration and resorption kinetics to support bone regeneration when used in conjunction with bone filler.
Keywords
Guided bone regeneration; Cross-linked collagen membrane; 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Hammerle CH, Jung RE. Bone augmentation by means of barrier membranes. Periodontol. 2003;33:36-53.   DOI
2 Bornstein MM, Bosshardt D, Buser D. Effect of two different bioabsorbable collagen membranes on guided bone regeneration: a comparative histomorphometric study in the dog mandible. J Periodontol. 2007;78:1943-53.   DOI
3 Hammerle CH, Schmid J, Olah AJ, Lang NP. Osseous healing of experimentally created defects in the calvaria of rabbits using guided bone regeneration. A pilot study. Clin Oral Implants Res. 1992;3:144-7.   DOI
4 Zubery Y, Goldlust A, Alves A, Nir E. Ossification of a novel cross-linked porcine collagen barrier in guided bone regeneration in dogs. J Periodontol. 2007;78:112-21.   DOI
5 Retzepi M, Donos N. Guided bone regeneration: biological principle and therapeutic applications. Clin Oral Implants Res. 2010;21:567-76.   DOI
6 Park JH, Park CK, Kim ES, Park SY, Jo CM, Tak WY, et al. [The diagnostic value of serum hyaluronic acid, 7S domain of type IV collagen and AST/ALT ratio as markers of hepatic fibrosis in chronic hepatitis B and cirrhosis patients]. Taehan Kan Hakhoe chi =. Korean J Hepatol. 2003;9:79-88.
7 Gentile P, Chiono V, Tonda-Turo C, Ferreira AM, Ciardelli G. Polymeric membranes for guided bone regeneration. Biotechnol J. 2011;6:1187-97.   DOI
8 Postlethwaite AE, Seyer JM, Kang AH. Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. Proc Natl Acad Sci U S A. 1978;75:871-5.   DOI
9 Mundell RD, Mooney MP, Siegel MI, Losken A. Osseous guided tissue regeneration using a collagen barrier membrane. J Oral Maxillofac Surg Off J Am Assoc Oral Maxillofac Surg. 1993;51:1004-12.   DOI
10 Ivanovski S, Hamlet S, Retzepi M, Wall I, Donos N. Transcriptional profiling of "guided bone regeneration" in a critical-size calvarial defect. Clin Oral Implants Res. 2011;22:382-9.   DOI
11 Tal H, Kozlovsky A, Artzi Z, Nemcovsky CE, Moses O. Cross-linked and non-cross-linked collagen barrier membranes disintegrate following surgical exposure to the oral environment: a histological study in the cat. Clin Oral Implants Res. 2008;19:760-6.   DOI
12 Friedmann A, Gissel K, Soudan M, Kleber BM, Pitaru S, Dietrich T. Randomized controlled trial on lateral augmentation using two collagen membranes: morphometric results on mineralized tissue compound. J Clin Periodontol. 2011;38:677-85.   DOI
13 Becker W, Dahlin C, Becker BE, Lekholm U, van Steenberghe D, Higuchi K, et al. The use of e-PTFE barrier membranes for bone promotion around titanium implants placed into extraction sockets: a prospective multicenter study. Int J Oral Maxillofac Implants. 1994;9:31-40.
14 al-Arrayed F, Adam S, Moran J, Dowell P. Clinical trial of cross-linked human type I collagen as a barrier material in surgical periodontal treatment. J Clin Periodontol. 1995;22:371-9.   DOI
15 Tal H, Kozlovsky A, Artzi Z, Nemcovsky CE, Moses O. Long-term biodegradation of cross-linked and non-cross-linked collagen barriers in human guided bone regeneration. Clin Oral Implants Res. 2008;19:295-302.   DOI
16 Lekholm U, Becker W, Dahlin C, Becker B, Donath K, Morrison E. The role of early versus late removal of GTAM membranes on bone formation at oral implants placed into immediate extraction sockets. An experimental study in dogs. Clin Oral Implants Res. 1993;4:121-9.   DOI
17 Tal H. [Healing of osseous defects by guided bone regeneration using ribose cross linked collagen membranes]. Refuat Hapeh Vehashinayim. 2004;21:32-41. 93.
18 Zahedi S, Legrand R, Brunel G, Albert A, Dewe W, Coumans B, et al. Evaluation of a diphenylphosphorylazide-crosslinked collagen membrane for guided bone regeneration in mandibular defects in rats. J Periodontol. 1998;69:1238-46.   DOI
19 Rothamel D, Schwarz F, Sager M, Herten M, Sculean A, Becker J. Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat. Clin Oral Implants Res. 2005;16:369-78.   DOI
20 Zubery Y, Nir E, Goldlust A. Ossification of a collagen membrane cross-linked by sugar: a human case series. J Periodontol. 2008;79:1101-7.   DOI
21 Schmid J, Hammerle CH, Fluckiger L, Winkler JR, Olah AJ, Gogolewski S, et al. Blood-filled spaces with and without filler materials in guided bone regeneration. A comparative experimental study in the rabbit using bioresorbable membranes. Clin Oral Implants Res. 1997;8:75-81.   DOI
22 Park SN, Kim JK, Suh H. Evaluation of antibiotic-loaded collagen-hyaluronic acid matrix as a skin substitute. Biomaterials. 2004;25:3689-98.   DOI
23 Park SN, Park JC, Kim HO, Song MJ, Suh H. Characterization of porous collagen/hyaluronic acid scaffold modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide cross-linking. Biomaterials. 2002;23:1205-12.   DOI
24 Eun-Ung Lee CY, Ji-Wan H, Otgonbayar U, Eun-Joo J, Jung-Seok L, Ui-Won J, et al. Early healing processes in guided bone regeneration using cross-linked type-I collagen membrane at rabbit calvarial defect. Biomaterials Res. 2012;16(3):122-8.
25 Mooney MP, Mundell RD, Stetzer K, Ochs MW, Milch EA, Buckley MJ, et al. The effects of guided tissue regeneration and fixation technique on osseous wound healing in rabbit zygomatic arch osteotomies. J Craniofac Surg. 1996;7:46-53.   DOI
26 Sohn JY, Park JC, Um YJ, Jung UW, Kim CS, Cho KS, et al. Spontaneous healing capacity of rabbit cranial defects of various sizes. J Periodontal Implant Sci. 2010;40:180-7.   DOI
27 Rothamel D, Schwarz F, Sculean A, Herten M, Scherbaum W, Becker J. Biocompatibility of various collagen membranes in cultures of human PDL fibroblasts and human osteoblast-like cells. Clin Oral Implants Res. 2004;15:443-9.   DOI
28 Schwarz F, Rothamel D, Herten M, Wustefeld M, Sager M, Ferrari D, et al. Immunohistochemical characterization of guided bone regeneration at a dehiscence-type defect using different barrier membranes: an experimental study in dogs. Clin Oral Implants Res. 2008;19:402-15.   DOI
29 Rothamel D, Benner M, Fienitz T, Happe A, Kreppel M, Nickenig HJ, et al. Biodegradation pattern and tissue integration of native and cross-linked porcine collagen soft tissue augmentation matrices-an experimental study in the rat. Head Face Med. 2014;10:10.   DOI
30 Sela MN, Babitski E, Steinberg D, Kohavi D, Rosen G. Degradation of collagen-guided tissue regeneration membranes by proteolytic enzymes of Porphyromonas gingivalis and its inhibition by antibacterial agents. Clin Oral Implants Res. 2009;20:496-502.   DOI
31 Schwarz F, Rothamel D, Herten M, Sager M, Becker J. Angiogenesis pattern of native and cross-linked collagen membranes: an immunohistochemical study in the rat. Clin Oral Implants Res. 2006;17:403-9.   DOI
32 Oh TJ, Meraw SJ, Lee EJ, Giannobile WV, Wang HL. Comparative analysis of collagen membranes for the treatment of implant dehiscence defects. Clin Oral Implants Res. 2003;14:80-90.   DOI
33 Zellin G, Gritli-Linde A, Linde A. Healing of mandibular defects with different biodegradable and non-biodegradable membranes: an experimental study in rats. Biomaterials. 1995;16:601-9.   DOI
34 Luepke PG, Mellonig JT, Brunsvold MA. A clinical evaluation of a bioresorbable barrier with and without decalcified freeze-dried bone allograft in the treatment of molar furcations. J Clin Periodontol. 1997;24:440-6.   DOI
35 von Arx T, Hafliger J, Chappuis V. Neurosensory disturbances following bone harvesting in the symphysis: a prospective clinical study. Clin Oral Implants Res. 2005;16:432-9.   DOI
36 Schenk RK, Buser D, Hardwick WR, Dahlin C. Healing pattern of bone regeneration in membrane-protected defects: a histologic study in the canine mandible. Int J Oral Maxillofac Implants. 1994;9:13-29.