Browse > Article
http://dx.doi.org/10.1186/s40824-014-0026-7

Comparative evaluation of biphasic calcium phosphate and biphasic calcium phosphate collagen composite on osteoconductive potency in rabbit calvarial defect  

Lee, Eun-Ung (Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University)
Kim, Dong-Ju (Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University)
Lim, Hyun-Chang (Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University)
Lee, Jung-Seok (Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University)
Jung, Ui-Won (Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University)
Choi, Seong-Ho (Department of Periodontology, Research Institute for Periodontal Regeneration, College of Dentistry, Yonsei University)
Publication Information
Biomaterials Research / v.19, no.1, 2015 , pp. 50-56 More about this Journal
Abstract
Background: The aim of this study was to determine the osteoconductivity of biphasic calcium phosphate collagen composite (BCPC) in rabbit calvarial defect model by comparing with biphasic calcium phosphate (BCP). Four 8 mm diameter bicortical calvarial defects were made in ten rabbits. Each of the defects was randomly assigned and filled with 1) collagen sponge, 2) BCP, 3) BCPC, and 4) nothing as control. The animals were sacrificed at either 2 weeks (n = 5) or 8 weeks (n = 5) healing period. Results: All groups showed wedge shaped new bone formation limited to the area of the defect margin at both healing periods. The amounts of new bone and defect closure were similar among all groups. In the control and collagen sponge group, the center of the defect was depressed by surrounding tissues. In contrast, in BCP and BCPC group, the center of the defect did not depressed and the grafted materials maintained the space. And the augmented area was significantly higher in BCP and BCPC group compared to the control and collagen sponge group at both healing periods (p < 0.05). Conclusions: The BCPC and BCP demonstrated proper space maintaining capacity and osteoconductive property, suggesting BCPC can be efficiently utilized in various clinical situations.
Keywords
Biphasic calcium phosphate; Bone regeneration; Bone substitutes; Collagen; Osteoconduction;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Cavalcanti SC, Pereira CL, Mazzonetto R, de Moraes M, Moreira RW. Histological and histomorphometric analyses of calcium phosphate cement in rabbit calvaria. J Cranio-maxillo-facial Surg. 2008;36(6):354-9.   DOI
2 Sohn JY, Park JC, Um YJ, Jung UW, Kim CS, Cho KS, et al. Spontaneous healing capacity of rabbit cranial defects of various sizes. J Periodontal Implant Sci. 2010;40(4):180-7.   DOI
3 Yang C, Unursaikhan O, Lee JS, Jung UW, Kim CS, Choi SH. "Osteoconductivity and biodegradation of synthetic bone substitutes with different tricalcium phosphate contents in rabbits,". J Biomed Mater Res B Appl Biomater. 2014;102(1):80-8.   DOI
4 Lim HC, Sohn JY, Park JC, Um YJ, Jung UW, Kim CS, et al. "Osteoconductive effects of calcium phosphate glass cement grafts in rabbit calvarial defects,". J Biomed Mater Res B Appl Biomater. 2010;95(1):47-52.
5 Park JC LH, Sohn JY, Yun JH, Jung UW, Kim CS, et al. "Bone regeneration capacity of two different macroporous biphasic calcium materials in rabbit calvarial defect.,". J Korean Acad Periodontol. 2009;39:223-30.   DOI
6 Dahlin C, Linde A, Gottlow J, Nyman S. Healing of bone defects by guided tissue regeneration. Plast Reconstr Surg. 1988;81(5):672-6.   DOI
7 Nyman S, Lindhe J, Karring T, Rylander H. New attachment following surgical treatment of human periodontal disease. J Clin Periodontol. 1982;9(4):290-6.   DOI
8 Strobel LA, Rath SN, Maier AK, Beier JP, Arkudas A, Greil P, et al. Induction of bone formation in biphasic calcium phosphate scaffolds by bone morphogenetic protein-2 and primary osteoblasts. J Tissue Eng Regen Med. 2014;8(3):176-85.   DOI
9 Shin YS, Seo JY, Oh SH, Kim JH, Kim ST, Park YB, et al. The effects of ErhBMP-2-/EGCG-coated BCP bone substitute on dehiscence around dental implants in dogs. Oral Dis. 2014;20(3):281-7.   DOI
10 Geiger M, Li RH, Friess W. Collagen sponges for bone regeneration with rhBMP-2. Adv Drug Deliv Rev. 2003;55(12):1613-29.   DOI
11 Friess W, Uludag H, Foskett S, Biron R, Sargeant C. Characterization of absorbable collagen sponges as recombinant human bone morphogenetic protein-2 carriers. Int J Pharm. 1999;185(1):51-60.   DOI
12 Dorozhkin SV. Bioceramics of calcium orthophosphates. Biomaterials. 2010;31(7):1465-85.   DOI
13 Erbe EM, Marx JG, Clineff TD, Bellincampi LD. "Potential of an ultraporous beta-tricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft,". Eur Spine J. 2001;Suppl 2:S141-6.
14 Rosenberg E, Rose LF. Biologic and clinical considerations for autografts and allografts in periodontal regeneration therapy. Dent Clin North Am. 1998;42(3):467-90.
15 Han T, Carranza Jr FA, Kenney EB. Calcium phosphate ceramics in dentistry: a review of the literature. J West Soc Periodontol Periodontal Abstr. 1984;32(3):88-108.
16 Moskow BS, Lubarr A. Histological assessment of human periodontal defect after durapatite ceramic implant. Report of a case. J Periodontol. 1983;54(8):455-62.   DOI
17 Ellinger RF, Nery EB, Lynch KL. Histological assessment of periodontal osseous defects following implantation of hydroxyapatite and biphasic calcium phosphate ceramics: a case report. Int J Periodontics Restorative Dent. 1986;6(3):22-33.
18 Daculsi G, Passuti N, Martin S, Deudon C, Legeros RZ, Raher S. Macroporous calcium phosphate ceramic for long bone surgery in humans and dogs. Clinical and histological study. J Biomed Mater Res. 1990;24(3):379-96.   DOI
19 Nery EB, LeGeros RZ, Lynch KL, Lee K. Tissue response to biphasic calcium phosphate ceramic with different ratios of HA/beta TCP in periodontal osseous defects. J Periodontol. 1992;63(9):729-35.   DOI
20 Kim JW, Choi KH, Yun JH, Jung UW, Kim CS, Choi SH, et al. Bone formation of block and particulated biphasic calcium phosphate lyophilized with Escherichia coli-derived recombinant human bone morphogenetic protein 2 in rat calvarial defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(3):298-306.   DOI
21 Kim JW, Jung IH, Lee KI, Jung UW, Kim CS, Choi SH, et al. Volumetric bone regenerative efficacy of biphasic calcium phosphate-collagen composite block loaded with rhBMP-2 in vertical bone augmentation model of a rabbit calvarium. J Biomed Mater Res Part A. 2012;100(12):3304-13.
22 Postlethwaite AE, Seyer JM, Kang AH. Chemotactic attraction of human fibroblasts to type I, II, and III collagens and collagen-derived peptides. ProcNatl Acad Sci U S A. 1978;75(2):871-5.   DOI
23 Patino MG, Neiders ME, Andreana S, Noble B, Cohen RE. Collagen as an implantable material in medicine and dentistry. J Oral Implantol. 2002;28(5):220-5.   DOI
24 Twardowski T, Fertala A, Orgel JP, San Antonio JD. Type I collagen and collagen mimetics as angiogenesis promoting superpolymers. Curr Pharm Des. 2007;13(35):3608-21.   DOI
25 Nasr HF, Aichelmann-Reidy ME, Yukna RA. "Bone and bone substitutes,". Periodontol 2000. 1999;19:74-86.   DOI
26 Rothamel D, Schwarz F, Sager M, Herten M, Sculean A, Becker J. Biodegradation of differently cross-linked collagen membranes: an experimental study in the rat. Clin Oral Implants Res. 2005;16(3):369-78.   DOI
27 Schwarz F, Rothamel D, Herten M, Sager M, Becker J. Angiogenesis pattern of native and cross-linked collagen membranes: an immunohistochemical study in the rat. Clin Oral Implants Res. 2006;17(4):403-9.   DOI
28 Lynch MP, Stein JL, Stein GS, Lian JB. The influence of type I collagen on the development and maintenance of the osteoblast phenotype in primary and passaged rat calvarial osteoblasts: modification of expression of genes supporting cell growth, adhesion, and extracellular matrix mineralization. Exp Cell Res. 1995;216(1):35-45.   DOI
29 Sela MN, Kohavi D, Krausz E, Steinberg D, Rosen G. Enzymatic degradation of collagen-guided tissue regeneration membranes by periodontal bacteria. Clin Oral Implants Res. 2003;14(3):263-8.   DOI
30 Fellah BH, Gauthier O, Weiss P, Chappard D, Layrolle P. Osteogenicity of biphasic calcium phosphate ceramics and bone autograft in a goat model. Biomaterials. 2008;29(9):1177-88.   DOI
31 Fleckenstein KB, Cuenin MF, Peacock ME, Billman MA, Swiec GD, Buxton TB, et al. Effect of a hydroxyapatite tricalcium phosphate alloplast on osseous repair in the rat calvarium. J Periodontol. 2006;77(1):39-45.   DOI
32 Brodie JC, Merry J, Grant MH. The mechanical properties of calcium phospate ceramics modified by collagen coating and populated by osteoblasts. J Mater Sci Mater Med. 2006;17(1):43-8.
33 Newman E, Turner AS, Wark JD. The potential of sheep for the study of osteopenia: current status and comparison with other animal models. Bone. 1995;16(4 Suppl):277S-84S.   DOI
34 Pripatnanont P, Nuntanaranont T, Vongvatcharanon S. Proportion of deproteinized bovine bone and autogenous bone affects bone formation in the treatment of calvarial defects in rabbits. Int J Oral Maxillofac Surg. 2009;38(4):356-62.   DOI
35 Xu S, Lin K, Wang Z, Chang J, Wang L, Lu J, et al. Reconstruction of calvarial defect of rabbits using porous calcium silicate bioactive ceramics. Biomaterials. 2008;29(17):2588-96.   DOI
36 Shand JM, Heggie AA, Holmes AD, Holmes W. Allogeneic bone grafting of calvarial defects: an experimental study in the rabbit. Int J Oral Maxillofac Surg. 2002;31(5):525-31.   DOI
37 Lundgren D, Nyman S, Mathisen T, Isaksson S, Klinge B. Guided bone regeneration of cranial defects, using biodegradable barriers: an experimental pilot study in the rabbit. J Cranio-maxillo-facial Surg. 1992;20(6):257-60.   DOI