Browse > Article
http://dx.doi.org/10.1186/s40824-014-0025-8

Engineered biomaterials for development of nucleic acid vaccines  

Yang, Jun (National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences)
Li, Yan (National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences)
Jin, Shubin (CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology)
Xu, Jing (CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology)
Wang, Paul C (Laboratory of Molecular Imaging, Department of Radiology, Howard University)
Liang, Xing-Jie (CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology)
Zhang, Xin (National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences)
Publication Information
Biomaterials Research / v.19, no.1, 2015 , pp. 21-29 More about this Journal
Abstract
Nucleic acid vaccines have attracted many attentions since they have presented some superiority over traditional vaccines. However, they could only induce moderate immunogenicity. The route and formulation of nucleic acid vaccines have strong effects on the immune response and efficiency. Numerous biomaterials are used as a tool to enhance the immunogenicity of antigens. They deliver the antigens into the cells through particle- and non-particle-mediated pathway. However, challenges remain due to lack of comprehensive understanding of the actions of these biomaterials as a carrier/adjuvant. Herein, this review focuses on the evolution of biomaterials used for nucleic acid vaccines, discusses the advantages and disadvantages for gene delivery and immunostimulation of variety of structures of the biomaterials, in order to provide new thought on rational design of carrier/adjuvant and better understanding of mechanism of action in both immunostimulatory and delivery methods.
Keywords
Nucleic acid vaccine; Biomaterials; Gene delivery; Adjuvant; Immunogenicity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chakravarthy KV, Bonoiu AC, Davis WG, Ranjan P, Ding H, Hu R, et al. Gold nanorod delivery of an ssRNA immune activator inhibits pandemic H1N1 influenza viral replication. Proc Natl Acad Sci U S A. 2010;107(22):10172-7.   DOI
2 Salem AK, Searson PC, Leong KW. Multifunctional nanorods for gene delivery. Nat Mater. 2003;2(10):668-71.   DOI
3 Almeida JPM, Figueroa ER, Drezek RA. Gold nanoparticle mediated cancer immunotherapy. Nanomedicine. 2014;10(3):503-14.   DOI
4 Xu L, Liu Y, Chen Z, Li W, Liu Y, Wang L, et al. Surface-Engineered Gold Nanorods: Promising DNA Vaccine Adjuvant for HIV-1 Treatment. Nano Lett. 2012;12:2003-12.   DOI
5 Grant EV, Thomas M, Fortune J, Klibanov AM, Letvin NL. Enhancement of plasmid DNA immunogenicity with linear polyethylenimine. Eur J Immunol. 2012;42:2937-48.   DOI
6 Patnaik S, Gupta KC. Novel polyethylenimine-derived nanoparticles for in vivo gene delivery. Expert Opin Drug Deliv. 2013;10(2):215-28.   DOI
7 Huang R, Liu S, Shao K, Han L, Ke W, Liu Y, et al. Evaluation and mechanism studies of PEGylated dendrigraft poly-L-lysines as novel gene delivery vectors. Nanotechnology. 2010;21(26):265101-11.   DOI
8 Hofman J, Buncek M, Haluza R, Ludvik S, Ledvina M, Cigler P. In vitro transfection mediated by dendrigraft poly(L-lysines): the effect of structure and molecule size. Macromol Biosci. 2013;13(2):167-76.   DOI
9 Little SR, Lynn DM, Puram SV, Langer R. Formulation and characterization of poly (beta amino ester) microparticles for genetic vaccine delivery. J Control Release. 2005;107(3):449-62.   DOI
10 Little SR, Lynn DM, Ge Q, Anderson DG, Puram SV, Chen J, et al. Poly-beta amino ester-containing microparticles enhance the activity of nonviral genetic vaccines. Proc Natl Acad Sci U S A. 2004;101(26):9534-9.   DOI
11 Shen Y, Tang H, Zhan Y, Kirk EAV, Murdoch WJ. Degradable Poly(${\beta}$-amino ester) nanoparticles for cancer cytoplasmic drug delivery. Nanomedicine. 2009;5:192-201.   DOI
12 Zhang B, Ma X, Murdoch W, Radosz M, Shen Y. Bioreducible poly(amido amine)s with different branching degrees as gene delivery vectors. Biotechnol Bioeng. 2013;110:990-8.   DOI
13 Huang B, Kukowska-Latallo JF, Tang S, Zong H, Johnson KB, Desai A, et al. The facile synthesis of multifunctional PAMAM dendrimer conjugates through copper-free click chemistry. Bioorg Med Chem Lett. 2012;22(9):3152-6.   DOI
14 Zhang X, Sharma KK, Boeglin M, Ogier J, Mainard D, Voegel J-C, et al. Transfection ability and intracellular DNA pathway of nanostructured gene-delivery systems. Nano Lett. 2008;8(8):2432-6.   DOI
15 Ma Y-F, Yang Y-W. Delivery of DNA-based cancer vaccine with polyethylenimine. Eur J Pharm Sci. 2010;40(2):75-83.   DOI
16 Akinc A, Thomas M, Klibanov AM, Langer R. Exploring polyethyleniminemediated DNA transfection and the proton sponge hypothesis. J Gene Med. 2005;7(5):657-63.   DOI
17 Negash T, Liman M, Rautenschlein S. Mucosal application of cationic poly(d, l-lactide-co-glycolide) microparticles as carriers of DNA vaccine and adjuvants to protect chickens against infectious bursal disease. Vaccine. 2013;31:3656-62.   DOI
18 Zhou X, Liu B, Yu X, Zha X, Zhang X, Chen Y, et al. Controlled release of PEI/DNA complexes from mannose-bearing chitosan microspheres as a potent delivery system to enhance immune response to HBV DNA vaccine. J Control Release. 2007;121(3):200-7.   DOI
19 Li M, Jiang Y, Xu C, Zhang Z, Sun X. Enhanced immune response against HIV-1 induced by a heterologous DNA prime-adenovirus boost vaccination using mannosylated polyethyleneimine as DNA vaccine adjuvant. Int J Nanomedicine. 2013;8:1843-54.
20 Sun X, Chen S, Han J, Zhang Z. Mannosylated biodegradable polyethyleneimine for targeted DNA delivery to dendritic cells. Int J Nanomedicine. 2012;7:2929-42.
21 Mannisto M, Vanderkerken S, Toncheva V, Elomaa M, Ruponen M, Schacht E, et al. Structure-activity relationships of poly(L-lysines): effects of pegylation and molecular shape on physicochemical and biological properties in gene delivery. J Control Release. 2002;83(1):169-82.   DOI
22 Green JJ, Zugates GT, Tedford NC, Huang Y-H, Griffith LG, Lauffenburger DA, et al. Combinatorial modification of degradable polymers enables transfection of human cells comparable to adenovirus. Adv Mater. 2007;19:2836-42.   DOI
23 Liu Z, Lv D, Liu S, Gong J, Wang D, Xiong M, et al. Alginic acid-coated chitosan nanoparticles loaded with legumain DNA vaccine: effect against breast cancer in mice. PLoS One. 2013;8(4):e60190.   DOI
24 Yao W, Peng Y, Du M, Luo J, Zong L. Preventative vaccine-loaded mannosylated chitosan nanoparticles intended for nasal mucosal delivery enhance immune responses and potent tumor immunity. Mol Pharmaceutics. 2013;10:2904-14.   DOI
25 Feng G, Jiang Q, Xia M, Lu Y, Qiu W, Zhao D, et al. Enhanced immune response and protective effects of nano-chitosan-based DNA vaccine encoding T cell epitopes of Esat-6 and FL against mycobacterium tuberculosis infection. PLoS One. 2013;8(4):e61135.   DOI
26 Rudra JS, Tian YF, Jung JP, Collier JH. A self-assembling peptide acting as an immune adjuvant. Proc Natl Acad Sci U S A. 2010;107(2):622-7.   DOI
27 Rudra JS, Sun T, Bird KC, Daniels MD, Gasiorowski JZ, Chong AS, et al. Modulating Adaptive Immune Responses to Peptide Self-Assemblies. ACS Nano. 2012;6(2):1557-64.   DOI
28 Cui J, Rose RD, Best JP, Johnston APR, Alcantara S, Liang K, et al. Mechanically tunable, self-adjuvanting nanoengineered polypeptide particles. Adv Mater. 2013;25(25):3468-72.   DOI
29 Tian Y, Wang H, Liu Y, Mao L, Chen W, Zhu Z, et al. A peptide-based nanofibrous hydrogel as a promising DNA nanovector for optimizing the efficacy of HIV vaccine. Nano Lett. 2014;14:1439-45.   DOI
30 Minigo G, Scholzen A, Tang CK, Hanley JC, Kalkanidis M, Pietersz GA, et al. Poly-l-lysine-coated nanoparticles: a potent delivery system to enhance DNA vaccine efficacy. Vaccine. 2007;25:1316-27.   DOI
31 Henriksen-Lacey M, Korsholm KS, Andersen P, Perrie Y, Christensen D. Liposomal vaccine delivery systems. Expert Opin Drug Deliv. 2011;8(4):505-19.   DOI
32 Un K, Kawakami S, Suzuki R, Maruyama K, Yamashita F, Hashida M. Development of an ultrasound-responsive and mannose-modified gene carrier for DNA vaccine therapy. Biomaterials. 2010;31:7813-26.   DOI
33 Perrie Y, Frederik PM, Gregoriadis G. Liposome-mediated DNA vaccination: the effect of vesicle composition. Vaccine. 2001;19:3301-10.   DOI
34 Watson DS, Endsley AN, Huang L. Design considerations for liposomal vaccines: influence of formulation parameters on antibody and cellmediated immune responses to liposome associated antigens. Vaccine. 2012;30(13):2256-72.   DOI
35 Ginn SL, Alexander IE, Edelstein ML, Abedi MR, Wixon J. Gene therapy clinical trials worldwide to 2012 - an update. J Gene Med. 2013;15:65-77.   DOI
36 Stopeck AT, Jones A, Hersh EM, Thompson JA, Finucane DM, Gutheil JC, et al. Phase II study of direct intralesional gene transfer of allovectin-7, an HLA-B7/beta2-microglobulin DNA-liposome complex, in patients with metastatic melanoma. Clin Cancer Res. 2001;7(8):2285-91.
37 DeMuth PC, Min Y, Huang B, Kramer JA, Miller AD, Barouch DH, et al. Polymer multilayer tattooing for enhanced DNA vaccination. Nat Mater. 2013;12(4):367-76.   DOI
38 Pollard C, Rejman J, Haes WD, Verrier B, Gulck EV, Naessens T, et al. Type I IFN counteracts the induction of antigen-specific immune responses by lipid-based delivery of mRNA vaccines. Mol Ther. 2013;21(1):251-9.   DOI
39 Geall AJ, Verma A, Otten GR, Shaw CA, Hekele A, Banerjee K, et al. Nonviral delivery of self-amplifying RNA vaccines. Proc Natl Acad Sci U S A. 2012;109(36):14604-9.   DOI
40 Jenner E. An inquiry into the causes and effects of the variolae vaccinae, a disease discovered in some of the western counties of England, particularly Gloucestershire, and known by the name of the cow pox. 1798, New York: General Books.
41 Behbehani AM. The smallpox story: life and death of an old disease. Microbiol Rev. 1983;47(4):455-509.
42 Peek LJ, Middaugh CR, Berkland C. Nanotechnology in vaccine delivery. Adv Drug Deliv Rev. 2008;60(8):915-28.   DOI
43 Kubba AK, Taylor P, Graneek B, Strobel S. Non-responders to hepatitis B vaccination: a review. Commun Dis Public Health. 2003;6:106-12.
44 Plotkin SA. Vaccines: past, present and future. Nat Med. 2005;11(4 Suppl):S5-11.
45 Plotkin SA, Orenstein WA, Offit PA. Vaccines. Philadelphia: Saunders; 2008.
46 Laddy DJ, Weiner DB. From plasmids to protection: a review of DNA vaccines against infectious diseases. Int Rev Immunol. 2006;25(3-4):99-123.   DOI
47 Chiarella P, Massi E, Robertis MD, Fazio VM, Signori E. Strategies for effective naked-DNA vaccination against infectious diseases. Recent Pat Antiinfect Drug Discov. 2008;3(2):93-101.   DOI
48 Rice J, Ottensmeier CH, Stevenson FK. DNA vaccines: precision tools for activating effective immunity against cancer. Nat Rev Cancer. 2008;8(2):108-20.   DOI
49 Stevenson FK, Ottensmeier CH, Johnson P, Zhu D, Buchan SL, McCann KJ, et al. DNA vaccines to attack cancer. Proc Natl Acad Sci U S A. 2004;101 Suppl 2:14646-52.   DOI
50 Ferrera F, Lacava A, Rizzi M, Hahn BH, Indiveri F, Filaci G. Gene vaccination for the induction of immune tolerance. Ann N Y Acad Sci. 2007;1110:99-111.   DOI
51 Richard W, Sandra S, Elisabeth R, Fatima F, Josef T. Prophylactic mRNA vaccination against allergy. Curr Opin Allergy Clin Immunol. 2010;10(6):567-74.   DOI
52 Sardesai NY, Weiner DB. Electroporation delivery of DNA vaccines: prospects for success. Curr Opin Immunol. 2011;23(3):421-9.   DOI
53 Porgador A, Irvine KR, Iwasaki A, Barber BH, Restifo NP, Germain RN. Predominant role for directly transfected dendritic cells in antigen presentation to CD8+ T cells after gene gun immunization. J Exp Med. 1998;188(6):1075-82.   DOI
54 Kutzler MA, Weiner DB. DNA vaccines: ready for prime time? Nat Rev Genet. 2008;9(10):776-88.   DOI
55 Ledgerwood JE, Pierson TC, Hubka SA, Desai N, Rucker S, Gordon IJ, et al. A West Nile virus DNA vaccine utilizing a modified promoter induces neutralizing antibody in younger and older healthy adults in a phase I clinical trial. J Infect Dis. 2011;203(10):1396-404.   DOI
56 Martin JE, Pierson TC, Hubka S, Rucker S, Gordon IJ, Enama ME, et al. A West Nile virus DNA vaccine induces neutralizing antibody in healthy adults during a phase 1 clinical trial. J Infect Dis. 2007;196(12):1732-40.   DOI
57 Liu MA, Ulmer JB. Human clinical trials of plasmid DNA vaccines. Adv Genet. 2005;55:25-40.   DOI
58 Buchan S, Gronevik E, Mathiesen I, King CA, Stevenson FK, Rice J. Electroporation as a "prime/boost" strategy for naked DNA vaccination against a tumor antigen. J Immunol. 2005;174(10):6292-8.   DOI
59 Johansson DX, Ljungberg K, Kakoulidou M, Liljestrom P. Intradermal electroporation of naked replicon RNA elicits strong immune responses. PLoS One. 2012;7(1):e29732.   DOI
60 Yang J, Liu H, Zhang X. Design, preparation and application of nucleic acid delivery carriers. Biotechnol Adv. 2014;32(4):804-917.   DOI
61 Mora-Solano C, Collier JH. Engaging adaptive immunity with biomaterials. J Mater Chem B Mater Biol Med. 2014;2(17):2409-21.   DOI
62 Rodriguez-Gascon A, Pozo-Rodriguez A, Solinis MA. Development of nucleic acid vaccines: use of self-amplifying RNA in lipid nanoparticles. Int J Nanomedicine. 2014;9:1833-43.
63 Marrack P, McKee AS, Munks MW. Towards an understanding of the adjuvant action of aluminium. Nat Rev Immunol. 2009;9(4):287-93.   DOI
64 Ulmer JB, DeWitt CM, Chastain M, Friedman A, Donnelly JJ, McClements WL, et al. Enhancement of DNA vaccine potency using conventional aluminum adjuvants. Vaccine. 2000;18:18-28.
65 Wang S, Liu X, Fisher K, Smith JG, Chen F, Tobery TW, et al. Enhanced type I immune response to a hepatitis B DNA vaccine by formulation with calcium- or aluminum phosphate. Vaccine. 2000;18:1227-35.   DOI
66 Correia-Pintoa JF, Csaba N, Alonso MJ. Vaccine delivery carriers: insights and future perspectives. Int J Pharm. 2013;440(1):27-38.   DOI
67 Tomljenovic L, Shaw CA. Aluminum vaccine adjuvants: are they safe? Curr Med Chem. 2011;18(17):2630-7.   DOI