Browse > Article

Graphene Oxide-decorated PLGA/Collagen Hybrid Fiber Sheets for Application to Tissue Engineering Scaffolds  

Lee, Eun Ji (Department of Cogno-Mechatronics Engineering, Pusan National University)
Lee, Jong Ho (Department of Cogno-Mechatronics Engineering, Pusan National University)
Shin, Yong Cheol (Department of Cogno-Mechatronics Engineering, Pusan National University)
Hwang, Dong-Gook (Department of Applied Nanoscience, College of Nanoscience & Nanotechnology, Pusan National University)
Kim, Jin Soo (Department of Applied Nanoscience, College of Nanoscience & Nanotechnology, Pusan National University)
Jin, Oh Seong (Department of Cogno-Mechatronics Engineering, Pusan National University)
Jin, Linhua (Department of Cogno-Mechatronics Engineering, Pusan National University)
Hong, Suck Won (Department of Cogno-Mechatronics Engineering, Pusan National University)
Han, Dong-Wook (Department of Cogno-Mechatronics Engineering, Pusan National University)
Publication Information
Biomaterials Research / v.18, no.1, 2014 , pp. 18-24 More about this Journal
Abstract
In this study, novel graphene oxide (GO)-decorated hybrid fiber sheets composed of poly(lactic-co-glycolic acid, PLGA) and collagen (Col) (GO-PLGA/Col) for application to tissue engineering scaffolds were prepared via dual electrospinning. Physicochemical properties of GO-PLGA/Col fiber sheets were characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), Fourier transform infrared (FTIR) and Raman spectroscopy, thermogravimetric analysis (TGA) and contact angle measurement. FESEM and AFM images showed that GO-PLGA/Col fiber sheets had a three-dimensional interconnected pore structure with an average fiber diameter of about 480 nm. FTIR and Raman spectra revealed that GO was uniformly distributed in the fiber structure of PLGA or PLGA/Col sheets. TGA profiles demonstrated that GO-PLGA/Col hybrid fiber sheets were thermally stable in spite of adding GO. GO slightly affected the contact angle of PLGA sheets, while Col significantly increased their hydrophilicity. Initial attachment of human dermal fibroblasts (HDFs) on GO-PLGA and GO-PLGA/Col fiber sheets was significantly superior to that on PLGA sheets, and their proliferation was gradually increased during the culture period. These results suggest that GO-PLGA/Col hybrid fiber sheets can be effectively used as scaffolds supporting tissue regeneration.
Keywords
graphene oxide; PLGA; collagen; fiber sheets; tissue engineering;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 H. K. Makadia and S. J. Siegel, "Poly lactic-co-glicolic acid (PLGA) as biodegradable controlled drug delivery carrier," Polymers, 3, 1377 (2011).   DOI   ScienceOn
2 M. Fang, K. Wang, H. Lu, Y. Yang, and S. Nutt., "Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites," J. Mater. Chem., 19, 7098 (2009).   DOI   ScienceOn
3 J. P. Chen, G. Y. Chang, and J. K. Chen, "Electrospun collagen/chitosan nanofibrous membranes as wound dressing," Colloid. Surface. A, 313, 183 (2008).
4 K. G. Harding, H. L. Morris, and G. K. Patel, "Sience, medicine, and the future: healing chronic wounds," BMJ, 324, 160 (2002).   DOI   ScienceOn
5 B. S. Kim and D. J. Mooney, "Development of biocompatible synthetic extracellular matirces for tissue engineering," Trends Biotechnol, 16, 224 (1998).   DOI   ScienceOn
6 W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, "Electrospun nanofibrous structure: a novel scaffold for tissue engineering," J. Biomed. Mater. Res., 60, 613 (2002).   DOI   ScienceOn
7 E. J. Chong, T. T. Phan, I. J. Lim, Y. Z. Zhang, B. H. Bay, S. Ramakrishna, and C. T. Lim, "Evaluation of electrospun PCL/gelatin nanofibrous scaffold for wound healing and layered dermal reconstitution," Acta Biomater., 3, 321 (2007).   DOI   ScienceOn
8 W. Tan, J. Twomey, D. Guo, K. Madhavan, and M. Li, "Evaluation of nanostrucutural, mechanical, and biological properties of collagen-nanotube composites," IEEE Trans. Nanobioscience, 9, 121 (2010).   DOI   ScienceOn
9 I. Foltran, E. Foresti, B. Parma, P. Sabatino, and N. Roveri, "Novel biologically inspired collagen nanofibers reconstituted by electrospinning method," Macromol. Symp., 269, 111 (2008).
10 R. L. Fischer, M. G. McCoy, and S. A. Grant, "Electrospinning collagen and hyaluronic acid nanofiber meshes," J. Mater. Sci. Mater. Med., 23, 1645 (2012).   DOI   ScienceOn
11 D. R. Dreyer, S. J. Park, C. W. Bielawski, and R. S. Ruoff, "The chemistry of graphene oxide," Chem. Soc. Rev., 39, 228 (2010).   DOI   ScienceOn
12 M. V. Jose, V. Thomas, D. R. Dean, and E. Nyairo, "Fabrication and characterization of aligned nanofibrous PLGA/Collagen blends as bone tissue scaffolds," Polymer, 50, 3778 (2009).   DOI   ScienceOn
13 S. H. Yun, C. J. Kim, O. K. Kwon, W. I. Kim, and O. H. Kwon, "Fabrication and characterization of biodegradable nanofiber containing Insulin,"" Tissue Eng. Regen. Med., 9, 33 (2012).
14 L. Wu, H. Li, S. Li, X. Li, X. Yuan, X. Li, and Y. Zhang, "Composite fibrous membranes of PLGA and chitosan prepared by coelectrospinning and coaxial electrospinning," J. Biomed. Mater. Res. A, 92, 563 (2010).
15 H. -L. Kim, J. -H. Lee, M. H. Lee, B. J. Kwon, and J. -C. Park, "Evaluation of electrospun (1,3)-(1,6)-$\beta$-D-glucans/biodegradable polymer as artificial skin for full-thickness wound healing," Tissue Eng. Part A, 18, 2315 (2012).   DOI
16 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. -H. Ahn, P. Kim, J.- Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature, 457, 706 (2009).   DOI   ScienceOn
17 E. Stolyarova, K. T. Rim, S. Ryu, J. Maultzsch, P. Kim, L. E. Brus, T. F. Heinz, M. S. Hybertsen, and G. W. Flynn, "High-resolution scanning tunneling microscopy imaging of mesoscopic graphene sheets on an insulating surface," Proc. Natl. Acad. Sci. USA, 104, 9209 (2007).   DOI   ScienceOn
18 Y. Zhu, S. Murali, W. Cai, X. Li, J. W. Suk, J. R. Potts, and R.S. Ruoff, "Graphene and graphene oxide: synthesis, properites, and applications," Adv. Mater., 22, 3906 (2010).   DOI   ScienceOn
19 C. Chung, Y. -K. Kim, D. Shin, S. -R. Ryoo, B. H. Hong, and D. -H. Min, "Biomedical application of graphene and graphene oxide," Acc. Chem. Res., 46, 2211 (2013).   DOI   ScienceOn
20 B. Lu, T. Li, H. Zhao, X. Li, C. Gao, S. Zhang, and E. Xie, "Graphene-based composite materials beneficial to wound healing," Nanoscale , 4, 2978 (2012).   DOI   ScienceOn
21 W. S. Hummers and R. . Offeman, "Preparation of graphitic oxide," J. Am. Chem. Soc., 80, 1339 (1958).   DOI
22 S. K. Lee, H. Kim, and B. S. Shim, "Graphene: an emerging material for biological tissue engineering," Carbon Lett., 14, 63 (2013).   DOI   ScienceOn
23 X. Sun, Z. Liu, K. Welsher, J. T. Robinson, A. Goodwin, S. Zaric, and H. Dai., "Nano-graphene oxide for cellular imaging and drug delivery," Nano Res., 3, 203 (2008).
24 C. Wang, Y. Li, G. Ding, X. Xie, and M. Jiang, "Preparation and characterization of graphene oxide/poly(vinyl alcohol) composite nanofibers via electrospinning," J. Appl. Polym. Sci., 127, 3026 (2013).   DOI   ScienceOn
25 P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Nvoselov, "Graphene-based liquid crystal device," Nano Lett., 8, 1704 (2008).   DOI   ScienceOn
26 L. G. Cancado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R. B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, and A. C. Ferrari, "Quantifying defects in graphene via Raman spectroscopy at different excitation energies," Nano Lett., 11, 3190 (2011).   DOI   ScienceOn
27 Y. Hernandez, V. Nicolosi, M. Lotya, F. M. Blighe, Z. Sun, S. De, I. T. McGovern, B. Holland, M. Byrne, Y. K. Gun'Ko, J. J. Boland, P. Niraj, G. Duesberg, S. Krishnamurthy, R. Goodhue, J. Hutchison, V. Scardaci, A. C. Ferrari, and J. N. Coleman, "High-yield production of graphene by liquid-phase exfoliation of graphite," Nat. Nanotechnol, 3, 563 (2008).   DOI   ScienceOn
28 A. Sionkowska, M. Wisniewski, J. Skopinska, C. J. Kennedy, and T. J. Wess, "Molecular interactions in collagen and chitosan blends," Biomaterials, 25, 795 (2004).   DOI   ScienceOn
29 K. N. Kudin, B. Ozbas, H. C. Schniepp, R. K. Prud'homme, I. A. Aksay, and R. Car., "Raman spectra of graphite oxide and functionalized graphene sheets," Nano Lett., 8, 36 (2008).   DOI   ScienceOn
30 C. Thomsen and S. Reich, "Graphite oxide under high pressure: a Raman spectroscopic study," Phys. Rev. Lett., 85, 5214 (2000).   DOI   ScienceOn
31 N. J. Hallab, K. J. Bundy, K. O'Connor, R. L. Moses, and J. J. Jacobs, "Evaluation of metallic and polymeric biomaterial surface energy and surface roughness characteristics for directed cell adhesion," Tissue Eng., 7, 55 (2011).
32 E. Vey, C. Rodger, J. Booth, M. Claybourn, A. F. Miller, and A. Saiani., "Degradation kinetics of poly(lactic-co-glycolic) acid block copolymer cast films in phosphate buffer solution as revealed by infrared and Raman spectroscopies," Polym. Degrad. Stabil., 96, 1882 (2011).   DOI   ScienceOn
33 A. D. Li, Z. Z. Sun, M. Zhou, X. X. Xu, J. Y. Ma, W. Zheng, H. M. Zhou, L. Li, and Y. F. Zheng, "Electrospun chitosan-graft-PLGA nanofibers with significantly enhanced hydrophilicity and improved mechanical property," Colloids Surf. B Biointerfaces, 102, 674 (2013).   DOI   ScienceOn
34 Q. Wei, J. Lu, H. Ai, and B. Jiang, "Novel method for the fabrication of multiscale structure collagen/hydroxyapatite-microsphere composties based on $CaCO_3$ micoparticle templates," Mater. Lett., 80, 91 (2012).   DOI   ScienceOn
35 K. Wang, J. Ruan, H. Song, J. Zhang, Y. Wo, S. Guo, and D. Cui., "Biocompatibility of graphene oxide," Nanoscale Res. Lett., 6, 1 (2011).
36 P. P. Zuo, H. F. Feng, Z. Z. Xu, L. F. Zhang, Y. L. Zhang, W. Xia, and W. Q. Zhang, "Fabrication of biocompatible and mechanically reinforced graphene oxide-chitosan nanocomposite films," Chem. Cent. J., 7, 39 (2013).   DOI   ScienceOn
37 K. H. Liao, Y. S. Lin, C. W. Macosko, and C. L Haynes, "Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts," ACS Appl. Mater. Interfaces, 3, 2607 (2011).   DOI   ScienceOn
38 A. Magrez, S. Kasas, V. Salicio, N. Pasquier, J. W. Seo, M. Celio, S. Catsicas, B. Schwaller, and L. Forro, "Cellualar toxicity of carbon-based nanomaterials," Nano Lett., 6, 1121 (2006).   DOI   ScienceOn
39 Y. Arima and H. Iwata, "Effect of wettability and surface functional groups on protein adsorption and cell adhesion using welldefined mixed self-assembled monolayers," Biomaterials, 28, 3074 (2007).   DOI   ScienceOn
40 T. R. Nayak, H. Andersen, V. S. Makam, C. Khaw, S. Bae, X. Xu, P. -L. R. Ee, J. -H. Ahn, B. H. Hong, G. Pastorin, and B. Ozyilmaz, "Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells," ACS Nano, 5, 4670 (2011).   DOI   ScienceOn
41 W. C. Lee, C. H. Y. X. Lim, H. Shi, L. A. L. Tang, Y. Wang, C. T. Lim, and K. P. Loh, "Origin of enhanced stem cell growth and differentiation on graphene and graphene oxide," ACS Nano, 5, 7334 (2011).   DOI   ScienceOn
42 S. Y. Park, J. S. Park, S. H. Sim, M. G. Sung, K. S. Kim, B. H. Hong, and S. H. Hong, "Enhanced differentiation of human neural stem cells into neurons on grapheme," Adv. Mater., 23, H263 (2011).   DOI   ScienceOn
43 G. Y. Chen, D. W.P . Pang, S. M. Hwang, H. Y. Tuan, and Y. C. Hu, "A graphene-based platform for induced pluripotent stem cells culture and differentiation," Biomaterials, 33, 418 (2012).   DOI   ScienceOn
44 E. Schnell, K. Kinkhammer, S. Balzer, G. Brook, D. Klee, P. Dalton, and J. Mey, "Guidance of glial cell migration and axonal growth on electrospun nanofibers of poly-${\varepsilon}$-caprolactone and a collagen/poly-${\varepsilon}$ -caprolactone blend," Biomaterials, 28, 3012 (2007).   DOI   ScienceOn