Browse > Article

Targeted Gel-Lipid Nanocapsule for Intracellular Delivery of Anticancer Arsenic Trioxide  

Lee, Sang-Min (Department of Chemistry, The Catholic University of Korea)
Publication Information
Biomaterials Research / v.17, no.4, 2013 , pp. 187-193 More about this Journal
Abstract
Nanoscale drug delivery platforms have been demonstrated to exhibit the high therapeutic potential for cancer treatments by reducing the toxic side effects often associated with conventional small-molecule chemotherapy. However, limited successes have been achieved due to the lack of both targeting ability to particular cancer cells and specific triggers that can release the encapsulated drug under predefined condition. This article reports the formation of nanoscale gel-lipid capsule (GLC) for the delivery of arsenic trioxide anticancer agent. On the platform, the surface-anchored polymer chains form the cross-linked gel networks with alkyne-modified telechelic bis(oxyethylene)diamine linkers, which can trigger the release of encapsulated drug under acidic condition. The alkyne functionality also allows for the ligation of azide-modified folic acid as a targeting ligand via highly specific $Cu^I$-catalyzed [2+3] cycloaddition. The resulting folate-conjugated platform showed enhanced drug efficacy through folate receptor-mediated endocytosis process in KB nasopharyngeal cancer cells. With both targeting capability and acid-triggered drug-release property, GLCs constitute a versatile delivery platform for anticancer agents.
Keywords
nanoparticle; targeted therapy; anticancer agents; triggered release;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Saul, J. M., Annapragada, A., Natarajan, J. V., and Bellamkonda, R. V. "Controlled targeting of liposomal doxorubicin via the folate receptor in vitro" J. Control. Release 92, 49-67 (2003).   DOI   ScienceOn
2 Lee, S. -M., Lee, O. -S., O'Halloran, T. V., Schatz, G. C., and Nguyen, S. T. "Triggered Release of Pharmacophores from [Ni($HAsO_3$)]-Loaded Polymer-Caged Nanobin Enhances Proapoptotic Activity: A Combined Experimental and Theoretical Study" ACS Nano 5, 3961-3969 (2011).   DOI   ScienceOn
3 Nayak, S., and Lyon, L. A. "Soft Nanotechnology with Soft Nanoparticles" Angew. Chem., Int. Ed. 44, 7686-7708 (2005).   DOI   ScienceOn
4 Binder, W. H. "Polymer-Induced Transient Pores in Lipid Membranes" Angew. Chem., Int. Ed. 47, 3092-3095 (2008).   DOI   ScienceOn
5 Tannock, I. F., and Rotin, D. "Acid pH in Tumors and Its Potential for Therapeutic Exploitation" Cancer Res. 49, 4373-4384 (1989).
6 Salnikow, K., Donald, S. P., Bruick, R. K., Zhitkovich, A., Phang, J. M., and Kasprzak, K. S. "Depletion of Intracellular Ascorbate by the Carcinogenic Metals Nickel and Cobalt Results in the Induction of Hypoxic Stress" J. Biol. Chem. 279, 40337-40344 (2004).   DOI   ScienceOn
7 Low, P. S., Henne, W. A., and Doorneweerd, D. D. "Discovery and Development of Folic-Acid-Based Receptor Targeting for Imaging and Therapy of Cancer and Inflammatory Diseases" Acc. Chem. Res. 41, 120-129 (2008).   DOI   ScienceOn
8 Lee, R. J., and Low, P. S. "Delivery of liposomes into cultured KB cells via folate receptor- mediated endocytosis" J. Biol. Chem. 269, 3198-3204 (1994).
9 Zhu, J., Chen, Z., Lallemand-Breitenbach, V., and de The, H. "How acute promyelocytic leukaemia revived arsenic" Nat. Rev. Cancer 2, 705-714 (2002).   DOI   ScienceOn
10 Uslu, R., Sanli, U. A., Sezgin, C., Karabulut, B., Terzioglu, E., Omay, S. B., and Goker, E. "Arsenic Trioxide-mediated Cytotoxicity and Apoptosis in Prostate and Ovarian Carcinoma Cell Lines" Clin. Cancer Res. 6, 4957-4964 (2000).
11 Dilda, P. J., and Hogg, P. J. "Arsenical-based cancer drugs" Cancer Treat. Rev. 33, 542-564 (2007).   DOI   ScienceOn
12 Lee, S. -M., Chen, H., Dettmer, C. M., O'Halloran, T. V., and Nguyen, S. T. "Polymer-Caged Liposomes: A pH-Responsive Delivery System with High Stability" J. Am. Chem. Soc. 129, 15096-15097 (2007).   DOI   ScienceOn
13 You, E. -A., Ahn, R. W., Lee, M. H., Raja, M. R., O'Halloran, T. V., and Odom, T. W. "Size Control of Arsenic Trioxide Nanocrystals Grown in Nanowells" J. Am. Chem. Soc. 131, 10863-10865 (2009).   DOI   ScienceOn
14 Ahn, R. W., Chen, F., Chen, H., Stern, S. T., Clogston, J. D., Patri, A. K., Raja, M. R., Swindell, E. P., Parimi, V., Cryns, V. L., and O'Halloran, T. V. "A Novel Nanoparticulate Formulation of Arsenic Trioxide with Enhanced Therapeutic Efficacy in a Murine Model of Breast Cancer" Clin. Cancer Res. 16, 3607-3617 (2010).   DOI
15 Chen, H., MacDonald, R. C., Li, S., Krett, N. L., Rosen, S. T., and O'Halloran, T. V. "Lipid Encapsulation of Arsenic Trioxide Attenuates Cytotoxicity and Allows for Controlled Anticancer Drug Release" J. Am. Chem. Soc. 128, 13348-13349 (2006).   DOI   ScienceOn
16 Lee, S. -M., Chen, H., O'Halloran, T. V., and Nguyen, S. T. "'Clickable' Polymer-Caged Nanobins as a Modular Drug Delivery Platform" J. Am. Chem. Soc. 131, 9311-9320 (2009).   DOI   ScienceOn
17 Donaldson, M., Antignani, A., Milner, J., Zhu, N., Wood, A., Cardwell-Miller, L., Changpriroa, C. M., and Jackson, S. H. "p47phox-deficient immune microenvironment signals dysregulate naive T-cell apoptosis" Cell Death Differ. 16, 125-138 (2009).   DOI   ScienceOn
18 Rostovtsev, V. V., Green, L. G., Fokin, V. V., and Sharpless, K. B. "A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes" Angew. Chem., Int. Ed. 41, 2596-2599 (2002).   DOI   ScienceOn
19 Davis, M. E., Chen, Z., and Shin, D. M. "Nanoparticle therapeutics: an emerging treatment modality for cancer" Nat. Rev. Drug Discovery 7, 771-782 (2008).   DOI   ScienceOn
20 Maeda, H., Wu, J., Sawa, T., Matsumura, Y., and Hori, K. "Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review" J. Controlled Release 65, 271-284 (2000).   DOI   ScienceOn
21 Li, S. -D., and Huang, L. "Pharmacokinetics and Biodistribution of Nanoparticles" Mol. Pharmaceutics 5, 496-504 (2008).   DOI   ScienceOn
22 Gabizon, A. A. "Stealth Liposomes and Tumor Targeting: One Step Further in the Quest for the Magic Bullet" Clin. Cancer Res. 7, 223-225 (2001).
23 Drummond, D. C., Meyer, O., Hong, K., Kirpotin, D. B., and Papahadjopoulos, D. "Optimizing Liposomes for Delivery of Chemotherapeutic Agents to Solid Tumors" Pharmacol. Rev. 51, 691-744 (1999).
24 Barenholz, Y. "$Doxil^{(R)}$ - The first FDA-approved nano-drug: Lessons learned" J. Controlled Release 160, 117-134 (2012).   DOI   ScienceOn
25 Kim, E. S., Lu, C., Khuri, F. R., Tonda, M., Glisson, B. S., Liu, D., Jung, M., Hong, W. K., and Herbst, R. S. "A phase II study of STEALTH cisplatin (SPI-77) in patients with advanced non-small cell lung cancer" Lung Cancer 34, 427-432 (2001).   DOI   ScienceOn
26 Harrington, K. J., Lewanski, C. R., Northcote, A. D., Whittaker, J., Wellbank, H., Vile, R. G., Peters, A. M., and Stewart, J. S. W. "Phase I-II study of pegylated liposomal cisplatin (SPI-$077^{TM}$) in patients with inoperable head and neck cancer" Ann. Oncol. 12, 493-496 (2001).   DOI   ScienceOn
27 Bandak, S., Goren, D., Horowitz, A., Tzemach, D., and Gabizon, A. "Pharmacological studies of cisplatin encapsulated in long-circulating liposomes in mouse tumor models" Anti-Cancer Drugs 10, 911-920 (1999).   DOI
28 Allen, T. M., and Cullis, P. R. "Drug delivery systems: Entering the mainstream" Science 303, 1818-1822 (2004).   DOI   ScienceOn