Browse > Article

Micro-arc Oxidation and Its Application in Implant Surface Modification  

Han, Cheol-Min (School of Dentistry, Dankook University)
Lee, Eun-Jung (Institute of Tissue Regeneration Engineering (ITREN), Dankook University)
Lee, Hae-Hyoung (School of Dentistry, Dankook University)
Kim, Hae-Won (School of Dentistry, Dankook University)
Publication Information
Biomaterials Research / v.17, no.3, 2013 , pp. 102-108 More about this Journal
Abstract
Titanium (Ti) and its alloys are currently popularly used for dental and orthopedic implants, due to their merits, including corrosion resistance, mechanical properties, chemical stability and biocompatibility. Accumulated studies have also demonstrated that osseointegration of the Ti-based implants could be significantly improved by the surface modifications. Micro-arc oxidation (MAO) is one promising electrochemical modification technique for osseointegration of implants, enabling the deposition of a rough and thick oxide layer which containing calcium and phosphorous ions via one-step process. Here we briefly review recent studies on the MAO-modified Ti-based implant materials and their future applications.
Keywords
Titanium; Biocompatibility; Surface modification; Micro-arc Oxidation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. Wei, Y. Zhou, Y. Wang, Q. Meng and D. Jia, "Structure and apatite formation of microarc oxidized $TiO_2$-based films before and after alkali-treatment by various alkali concentrations," Surf. Coat. Tech., 202, 5012-5019 (2008).   DOI
2 A. Wennerberg, "The importance of surface roughness for implant incorporation," Int. J. Mach. Tool. Manu., 38, 657-662 (1998).   DOI
3 D. M. Brunette, P. Tengvall, M. Textor and P. Thomsen, Titanium in medicine, Springer, Berlin, 2001.
4 R. Van Noort, "Titanium: The implant material of today," J. Mater. Sci., 22, 3801-3811 (1987).   DOI
5 Y. T. Sul, C. B. Johansson, Y. Jeong, K. Roser, A. Wennerberg and T. Albrektsson, "Oxidized implants and their influence on the bone response," J. Mater. Sci. Mater. Med., 12, 1025-1031 (2001).   DOI
6 M. J. Filiaggi, N. A. Coombs and R. M. Pilliar, "Characterization of the interface in the plasma sprayed HA coating/Ti-6Al-4V implant system," J. Biomed. Mater. Res., 25, 1211-1229 (1991).   DOI
7 S. Hansson and M. Norton, "The relation between surface roughness and interfacial shear strength for bone-anchored implants. A mathematical model," J. Biomech., 32, 829-836 (1999).   DOI
8 D. Li, S. J. Ferguson, T. Beutler, D. L. Cochran, C. Sittig, H. P. Hirt and D. Buser, "Biomechanical comparison of the sandblasted and acid-etched and the machined and acid-etched titanium surface for dental implants," J. Biomed. Mater. Res., 60, 325-332 (2002).   DOI
9 T. Hanawa, Y. Kamiura, S. Yamamoto, T. Kohgo, A. Amemiya, H. Ukai, K. Murakami and K. Asaoka, "Early bone formation around calcium ion implanted titanium inserted into rat tibia," J. Biomed. Mater. Res., 36, 131-136 (1997).   DOI
10 S. H. Lee, H. E. Kim and H. W. Kim, "Nano-Sized Hydroxyapatite Coatings on Ti Substrate with $TiO_2$ Buffer Layer by E-beam Deposition," J. Am. Ceram. Soc., 90, 50-56 (2007).   DOI
11 H. W. Kim, H. E. Kim, V. Salih and J. C. Knowles, "Sol-gelmodified titanium with hydroxyapatite thin films and effect on osteoblast-like cell responses," J. Biomed. Mater. Res. A, 74, 294-305 (2005).
12 T. Kokubo, F. Miyaji, H. M. Kim and T. Nakamura, "Spontaneous formation of bonelike apatite layer on chemically treated titanium metals," J. Am. Ceram. Soc., 79, 1127-1129 (1996).   DOI
13 B. D. Hahn, D. S. Park, J. J. Choi, J. Ryu, W. H. Yoon, K. H. Kim, C. Park and H. E. Kim, "Dense nanostructured hydroxyapatite coating on titanium by aerosol deposition," J. Am. Ceram. Soc., 92, 683-687 (2009).   DOI
14 A. Yerokhin, X. Nie, A. Leyland, A. Matthews and S. Dowey, "Plasma electrolysis for surface engineering," Surf. Coat. Tech., 122, 73-93 (1999).   DOI
15 H. F. Guo, M. Z. An, H. B. Huo, S. Xu and L. J. Wu, "Microstructure characteristic of ceramic coatings fabricated on magnesium alloys by micro-arc oxidation in alkaline silicate solutions," Appl. Surf. Sci., 252, 7911-7916 (2006).   DOI
16 L. H. Li, Y. M. Kong, H. W. Kim, Y. W. Kim, H. E. Kim, S. J. Heo and J. Y. Koak, "Improved biological performance of Ti implants due to surface modification by micro-arc oxidation," Biomaterials, 25, 2867-2875 (2004).   DOI
17 E. Bardal, Corrosion and protection, Springer, New York, 2004.
18 J. Li, L. Wan and J. Feng, "Micro arc oxidation of S-containing $TiO_2$ films by sulfur bearing electrolytes," J. Mater. Process. Tech., 209, 762-766 (2009).   DOI
19 H. Ishizawa and M. Ogino, "Formation and characterization of anodic titanium oxide films containing Ca and P," J. Biomed. Mater. Res., 29, 65-72 (1995).   DOI
20 H. Ishizawa and M. Ogino, "Characterization of thin hydroxyapatite layers formed on anodic titanium oxide films containing Ca and P by hydrothermal treatment," J. Biomed. Mater. Res., 29, 1071-1079 (1995).   DOI
21 B. D. Boyan, R. Batzer, K. Kieswetter, Y. Liu , D. L. Cochran, S. Szmuckler-Moncler, D. D. Dean and Z. Schwartz, "Titanium surface roughness alters responsiveness of MG63 osteoblast-like cells to $1{\alpha}$,25-$(OH)_2D_3$," J. Biomed. Mater. Res., 39, 77-85 (1998).   DOI
22 J. Y. Martin, Z. Schwartz, T. W. Hummert, D. M. Schraub, J. Simpson, J. Lankford, D. D. Dean, D. L. Cochran and B. D. Boyan, "Effect of titanium surface roughness on proliferation, differentiation, and protein synthesis of human osteoblast-like cells (MG63)," J. Biomed. Mater. Res., 29, 389-401 (1995).   DOI
23 C. Capuccini, P. Torricelli, F. Sima, F. Boanini, C. Ristoscu, B. Bracci, G. Socol, M. Fini, I. N. Mihailescu and A. Bibi, "Strontiumsubstituted hydroxyapatite coatings synthesized by pulsed-laser deposition: In vitro osteoblast and osteoclast response," Acta Biomater., 4, 1885-1893 (2008).   DOI
24 K. C. Kung, T. M. Lee, J. L. Chen and T. S. Lui, "Characteristics and biological responses of novel coatings containing strontium by micro-arc oxidation," Surf. Coat. Tech., 205, 1714-1722 (2010).   DOI
25 Y. Han, D. H. Chen, L. Zhang. "Nanocrystallized SrHA/SrHA-$SrTiO_3$/ $SrTiO_3$-$TiO_2$ multilayer coatings formed by micro-arc oxidation for photocatalytic application," Nanotechnology, 19, 335705 (2008).   DOI
26 K. Nan, T. Wu, J. Chen, S. Jiang, Y. Huang and G. Pei, "Strontium doped hydroxyapatite film formed by micro-arc oxidation," Mater. Sci. Eng. C, 29, 1554-1558 (2009).   DOI
27 K. C. Kung, T. M. Lee and T. S. Lui, "Bioactivity and corrosion properties of novel coatings containing strontium by micro-arc oxidation," J. Alloy. Compd., 508, 384-390 (2010).   DOI
28 C. J. Chung and H. Y. Long, "Systematic strontium substitution in hydroxyapatite coatings on titanium via micro-arc treatment and their osteoblast/osteoclast responses," Acta Biomater., 7, 4081-4087 (2011).   DOI
29 W. C. Rodrigues, L. R. Broilo, L. Schaeffer, G. Knornschild and F. R. M. Espinoza, "Powder metallurgical processing of Co-28%Cr-6%Mo for dental implants: Physical, mechanical and electrochemical properties," Powder Technol., 206, 233-238 (2011).
30 K. H. Frosch and K. M. Sturmer, "Metallic Biomaterials in Skeletal Repair," Eur. J. Trauma, 32, 149-159 (2006).   DOI
31 C. M. Han, H. E. Kim, Y. S. Kim and S. K. Han, "Enhanced biocompatibility of Co-Cr implant material by Ti coating and micro-arc oxidation," J. Biomed. Mater. Res. B, 90, 165-170 (2009).
32 L. Zhao, P. K. Chu, Y. Zhang and Z. Wu, "Antibacterial coatings on titanium implants," J. Biomed. Mater. Res. B, 91, 470-480 (2009).
33 S. Radin, P. Ducheyne, T. Kamplain and B. H. Tan, "Silica sol-gel for the controlled release of antibiotics. I. Synthesis, characterization, and in vitro release," J. Biomed. Mater. Res. B, 57, 313-320 (2001).   DOI
34 Y. Han, S. H. Hong and K. Xu, "Structure and in vitro bioactivity of titania-based films by micro-arc oxidation,". Surf. Coat. Tech., 168, 249-258 (2003).   DOI
35 S. H. Jun, E. J. Lee, H. E. Kim J. H. Jang and Y. H. Koh, "Silicachitosan hybrid coating on Ti for controlled release of growth factors," J. Mater. Sci. Mater. Med., 22, 2757-2764 (2011).   DOI
36 C. M. Han, E. J. Lee, H. E. Kim, Y. H. Koh and J. H. Jang, " Porous $TiO_2$ films on Ti implants for controlled release of tetracyclinehydrochloride (TCH)," Thin Solid Films, 519, 8074-8076 (2011).   DOI
37 T. Kokubo and H. Takadama, "How useful is SBF in predicting in vivo bone bioactivity?" Biomaterials, 27, 2907-2915 (2006).   DOI
38 D. Wei, Y. Zhou, D. Jia and Y. Wang, "Characteristic and in vitro bioactivity of a microarc-oxidized $TiO_2$-based coating after chemical treatment," Acta Biomater., 3, 817-827 (2007).   DOI