Browse > Article

Preparation and Characterization of Hydrophilized Porous Polycaprolactone-encapsulated Alginate Microsphere for the Treatment of Diabetes Mellitus  

Kim, Eun Ji (Department of Advanced Materials, Hannam University)
Choi, Soo Jung (Department of Advanced Materials, Hannam University)
Kim, Tae Ho (Department of Advanced Materials, Hannam University)
Oh, Se Heang (Department of Nanobiomedical Science & WCU Research Center, Dankook University)
Lee, Jin Ho (Department of Advanced Materials, Hannam University)
Publication Information
Biomaterials Research / v.17, no.1, 2013 , pp. 13-19 More about this Journal
Abstract
Diabetes mellitus is a group of metabolic diseases in which a person has high blood sugar, either because the body does not produce enough insulin, or because cells do not respond to the insulin. Translation of islets has been proposed as a safe and effective therapeutic technique. The islets are commonly encapsulated in alginate/poly(l-lysine) (PLL) hydrogel to suppress the host immune response. However, the low islet isolation efficacy caused by the weak mechanical property of the alginate/PLL hydrogel which can allow hydrogel rupture and thus expose of islet to host immune system is remained a critical limitation for clinical application. To overcome this problem, we developed a hydrophilized porous polycaprolactone (PCL)-encapsulated alginate microsphere by an immersion precipitation of alginate microsphere into PCL/Pluronic F127 solution. Their morphology, mechanical stability in the PBS, protein adsorption behavior, insulin release profile and cytotoxicity were compared with conventional alginate/PLL microsphere.
Keywords
diabetes mellitus; insulin; encapsulation; immunosuppression; polycaprolactone; alginate;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 S. M. Jo, and J. C. Kim, "Trends in the studies of glucoseresponsive drug delivery systems," J. Korean Ind. Eng. Chem., 20, 581-585 (2009).
2 A. S. Krolewski, J. H. Warram, and M. B. Freire, "Epidemiology of late diabetic complications. A basis for the development and evaluation of preventive programs," Endocrinol. Metab. Clin. North. Am., 25, 217-242 (1996).   DOI   ScienceOn
3 S. Kizilel, M. Garfinkel, and E. Opara, "The bioartificial pancreas: progress and challenges," Diabetes Technol. Ther., 7, 968-985 (2005).   DOI   ScienceOn
4 M. Evans, "Avoiding hypoglycaemia when treating type 1 diabetes," Diabetes, Obes. Metab., 7, 488-492 (2005).   DOI   ScienceOn
5 G. Orive, A. R. Gascón, R. M. Hernández, M. Igartua, and J. Luis Pedraz, "Cell microencapsulation technology for biomedical purposes: novel insights and challenges," Trends Pharmacol Sci., 24, 207-210 (2003).   DOI   ScienceOn
6 D. J. Han, "Pancreas and islet transplantation in diabetes," J. Korean Med. Assoc., 51, 724-731 (2008).   DOI   ScienceOn
7 H. J. Kim, J. S. Yang, and C. R. Ahn, "Current strategies for successful islet xenotransplantation," J. Korean Soc. Transplant., 23, 214-226 (2009).   DOI   ScienceOn
8 B. J. Hering and C. Ricordi, "Islet transplantation for patients with type I diabetes," Graft, 2, 12-27 (1999).
9 H. Uludag, P. D. Vos, and P. A. Tresco, "Technology of mammalian cell encapsulation" Adv. Drug. Deliv. Rev., 42, 29-64 (2000).   DOI   ScienceOn
10 E. S. O'Sullivan, A. Vegas, D. G. Anderson, and G.C. Weir, "Islets transplanted in immunoisolatio devices: A review of the progress and the challenges that remain," Endocr. Rev., 32, 827-844 (2011).   DOI
11 A. G. Mallett, and G. S. Korbutt. "Alginate modification improves long-term survival and function of transplanted encapsulated islets," Tissue Eng. Part A., 15, 1301-1309 (2009).   DOI   ScienceOn
12 D. Y. Lee, J. H. Nam, and Y. Byun, "Functional and histological evaluation of transplanted pancreatic islets immunoprotected by PEGylation and cyclosporine for 1 year," Biomaterials, 28, 1957-1966 (2007).   DOI   ScienceOn
13 C. Bucke, "Cell immobilization in calcium alginate," Methods Enzymol., 135, 175-179 (1987).   DOI
14 B. L. Strand, T. L. Ryan, P. In't Veld, B. Kulseng, A. M. Rokstad, G. Skjak-Brek, and T. Espevik, "Poly-l-lysine induces fibrosis on alginate microcapsules via the induction of cytokines," Cell Transplant., 10, 263-275 (2001).
15 F. Lim, and A. M. Sum, "Microencapsulated islets as bioartificial endocrine pancreas," Science, 210, 908-910 (1980).   DOI
16 S. Sakai, T. Ono, H. Ijima, and K. Kawakami, "In vitro and in vivo evaluation of alginate/sol-gel synthesized aminopropyl-silicate/alginate membrane for bioartificial pancreas," Biomaterials, 23, 4177-4183 (2002).   DOI   ScienceOn
17 L. Sikurova and M. Kristekova, "Fluorescence and anisotropy and light-scattering studies of the interaction of insulin with liposomes," J. Fluoresc., 3, 215-217 (1993).   DOI   ScienceOn
18 L. Broens, F. W. Altena, C. A. Smolders, and D. M. Koenhen, "Asymmetric membrane structures as a result of phase separation phenomena," Desalination 32, 33-45 (1980).   DOI   ScienceOn
19 J. H. Lee and S. H. Oh, "MMA/MPEOMA/VSA copolymer as a novel blood-compatible materials: Effect of PEO and negatively charged side chains on protein adsorption and platelet adhesion," J. Biomed. Mater. Res., 60, 44-52 (2002).   DOI   ScienceOn
20 J. H. Lee, H. B. Lee, and J. D. Andrade JD, "Blood compatibility of polyethylene oxide surfaces," Prog. Polym. Sci., 20, 1043-1079 (1995).   DOI   ScienceOn
21 H. S. Park, D. S. Ham, Y. H. You, J. Y. Shin, J. W. Kim, J. H. Jo, O. Y. Kim, G. S. Khang, and K. H. Yoon, "Successful Xenogenic Islet ransplantation with Ba2+-Alginate Encapsulation" Tissue Eng. Regen. Med., 7, 523-530 (2010).
22 P. D. Vos, M. M. Faas, B. Strand, and R. Calafiore, "Alginate-based microcapsules for immunoisolation of pancreatic islets," Biomaterials, 27, 5603-5617 (2006).   DOI   ScienceOn
23 E. H. Nafea, A. Marson, L. A. Poole-Warren, and P. J. Martens, "Immunoisolating semi-permeable membranes for cell encapsulation: Focus on hydrogels" Journal of Controlled Release, 154, 110-122 (2011).   DOI   ScienceOn
24 Y. Shirai, K. Hashimoto, and S. Irie, "Formation of effective channels in alginate gel for immobilization of anchorage-dependent animal cells," Appl. Microbiol. Biotechnol., 4, 342-345 (1989).
25 X. Cheng, R. Liu and Y. H. He, "A simple method for the preparation of monodisperse protein-loaded microspheres with high encapsulation efficiencies" Eur J Pharm Biopharm., 76, 336-341 (2010).   DOI   ScienceOn
26 K. Wang, Q. Jia, J. Yuan, and S. Li, "A novel, simple method to simulate gelling process of injectable biodegradable in situ forming drug delivery system based on determination of electrical conductivity," Int. J. Pharmaceut.. 404, 176-179 (2011).   DOI   ScienceOn
27 T. H. Kim, S. H. Oh, S. Y. Na, S. Y. Chun, and J. H. Lee, "Effect of biological/physical stimulation on guided bone regeneration through asymmetrically porous membrane," J. Biomed. Mater. Res. Part A, 100A, 1512-1520 (2012).   DOI   ScienceOn
28 D. H. Kim, H. Y. Kim, H. S. Koh, H. E. Park, C. Ahn, and J. Y. Kim, "Alginate Microencapsulation of Cells Using Electrostatic Droplet Generator," J. Korean Soc. Transplant., 24, 101-109 (2010).   DOI   ScienceOn
29 T. Maguire, E. Novik, R. Schloss, and M. Yarmush, "Alginate-PLL microencapsulation: effect on the differentiation of embryonic stem cells into hepatocytes," Biotechnol Bioeng., 93, 581-591 (2006).   DOI   ScienceOn
30 C. B. Woitiski, B. Sarmento, R. A. Carvalho, R. J. Neufeld, and F. Veiga, "Facilitated nanoscale delivery of insulin across intestinal membrane models," Int. J. Pharm., 412, 123-131 (2011).   DOI   ScienceOn