Browse > Article
http://dx.doi.org/10.7844/kirr.2022.31.1.46

A Study on the Properties of Transition Metal Nitride Coating Materials for the Recovery of Tungsten and Rare Metals  

Kim, Jiwoo (Department of Organic Materials and Fiber Engineering, Soongsil University)
Kim, Myungjae (Department of Organic Materials and Fiber Engineering, Soongsil University)
Kim, Hyokyeong (Department of Organic Materials and Fiber Engineering, Soongsil University)
Park, Sohyun (Department of Organic Materials and Fiber Engineering, Soongsil University)
Seo, Minkyeong (Department of Organic Materials and Fiber Engineering, Soongsil University)
Kim, Jiwoong (Department of Organic Materials and Fiber Engineering, Soongsil University)
Publication Information
Resources Recycling / v.31, no.1, 2022 , pp. 46-55 More about this Journal
Abstract
The recycling of coated cemented carbide scraps is becoming increasingly significant for the recovery of rare metals. However, coatings consisting of Group IV and V transition metal nitrides are one of the challenging factors in obtaining high-purity materials. We investigated the structural, elastic, and mechanical properties of Group IV and V transition-metal nitrides (TiN, VN, ZrN, NbN, HfN, and TaN) using first-principle calculations. Convergence tests were performed to obtain reliable calculated results. The equilibrium structures of the nitrides were in good agreement with those of a previous study, indicating the reliability of the data. Group IV transition metal nitrides show a higher covalent bonding nature. Thus, they exhibit a higher degree of brittleness than that of Group V transition metal nitrides. In contrast, Group V transition metal nitrides show weaker resistance to shear loading and more ductile behavior than Group IV transition metal nitrides because of the metallic bonds characterized by valence electron concentration. The results of the crystal orbital Hamilton population analysis showed good agreement with the shear resistance tendencies of all transition metal nitrides.
Keywords
Elastic properties; Nitrides; First principles; Recycling; Cemented carbide scrap;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tomoyuki, I., TaKeshi, I., Hideki, M., et al., 2012 : Development of technologies for recycling cemented carbide scrap and reducing tungsten use in cemented carbide tools, SEI Technical Review, 75, pp.30-46.
2 Suh. Y, Kim. J, Kim. J, 2020. KR. 10-2133278.
3 Katiyar, P. K., Randhawa, N. S., 2020 : A comprehensive review on recycling methods for cemented tungsten carbide scraps highlighting the electrochemical techniques, International Journal of Refractory Metals and Hard Materials, 90, pp.105251.   DOI
4 Shemi, A., Magumise, A., Ndlovu, S., et al., 2018 : Recycling of tungsten carbide scrap metal: A review of recycling methods and future prospects, Minerals Engineering, 122, pp.195-205.   DOI
5 Reuss, A., 1929 : Berechnung der fliessgrenze von mischkristallen auf grund der plastizitatsbedingung fur einkristalle., ZAMM - zeitschrift fur angewandte mathematik und mechanik, 9(1), pp.49.   DOI
6 Shemi, A., Magumise, A., Ndlovu, S., et al., 2018 : Recycling of tungsten carbide scrap metal: A review of recycling methods and future prospects, Minerals Engineering, 122, pp.195-205.   DOI
7 Kuang, H., Tan, D., He, W., et al., 2017 : Mechanism of multi-layer composite coatings in the zinc process of recycling coated WC-Co cemented-carbide scrap, Materiali in tehnologije, 51(6), pp.997-1003.   DOI
8 Kang, D. B., 2013 : Effect of valence electron concentration on elastic properties of 4d transition metal carbides MC (M = Y, Zr, Nb, and Rh)., Bulletin of the Korean Chemical Society, 34(7), pp.2171-2175.   DOI
9 Aouadi, S. M., 2006 : Structural and mechanical properties of TaZrN films: Experimental and ab initio studies, Journal of Applied Physics, 99(5), pp.053507.   DOI
10 Kim, D. J., Cho, Y.R., Lee, M.J., et al., 1999 : Properties of TiN-TiC multilayer coatings using plasma-assisted chemical vapor deposition, Surface and Coatings Technology, 116(119), pp.906-910.
11 Maerky, C., Guillou, M. O., Henshall, J. L., et al., 1996 : Indentation hardness and fracture toughness in single crystal TiC0.96, Materials Science and Engineering: A, 209(1-2), pp.329-336.   DOI
12 Kresse, G., Furthmuller, J., 1996 : Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set, Computational Materials Science, 6(1), pp.15-50.   DOI
13 Meyers, M. A., Chawla, K. K., 2008 : Mechanical behavior of materials, pp.855, 4th Edition Cambridge University Press, New York.
14 Hill, R., 1952 : The elastic behaviour of a crystalline aggregate, proceedings of the physical Society. Section A, 65(5) pp.349.   DOI
15 Sun, W., Holder, A., Orvananos, B., et al., 2017 : Thermodynamic Routes to Novel Metastable Nitrogen-Rich Nitrides, Chemistry of Materials, 29(16), pp.6936-6946.   DOI
16 Guillermet, A. F., Haglund, J., Grimvall, G., 1993 : Cohesive properties and electronic structure of 5d transitionmetal carbides and nitrides in the NaCl structure, Physical Review B, 48(16), pp.11673-11684.   DOI
17 Voigt, W., 1910 : Lehrbuch der kristallphysik:(mit ausschluss der kristalloptik), pp.979, Springer, Wiesbaden.
18 Chen, W., Jiang. J. Z., 2010 : Elastic properties and electronic structures of 4d- and 5d-transition metal mono-nitrides, Journal of Alloys and Compounds, 499(2), pp. 243-254.   DOI
19 Perdew, J. P., Burke, K., Ernzerhof, M., 1996 : Generalized gradient approximation made simple, Physical Review Letters, 77(18), pp.3865-3868.   DOI
20 Monkhorst, H. J., Pack, J. D., 1976 : Special points for Brillouin-zone integrations, Physical Review B, 13(12), pp.5188.   DOI
21 Nelson, R., Ertural, C., George, J., et al., 2020, LOBSTER: Local orbital projections, atomic charges, and chemical-bonding analysis from projector-augmented-wave-based density-functional theory, Journal of Computational Chemistry, 41(21), pp.1931-1940.   DOI
22 Zheng, K., Yang, F., Pan, M., et al., 2021 : Effect of surface line/regular hexagonal texture on tribological performance of cemented carbide tool for machining Ti-6Al-4V alloys, International Journal of Advanced Manufacturing Technology, 116(9-10), pp.3149-3162.   DOI
23 Kim, J., Kang, S., 2012 : Elastic and thermo-physical properties of TiC, TiN, and their intermediate composition alloys using ab initio calculations, Journal of Alloys and Compounds, 528, pp.20-27.   DOI
24 Jhi, S. H., Ihm, J., Loule, S. G., et al., 1999 : Electronic mechanism of hardness enhancement in transition-metal carbonitrides, Nature, 399, pp.132-134.   DOI
25 Eck, B., Dronskowski, R., Takahashi, M., et al., 1999 : Theoretical calculations on the structures, electronic and magnetic properties of binary 3d transition metal nitrides, Journal of Materials Chemistry, 9(7), pp.1527-1537.   DOI
26 Chen, X. J., Struzhkin, V. V., Wu, Z., et al., 2005 : Hard superconducting nitrides, Proceedings of the National Academy of Sciences of the United States of America, 102(9), pp.3198-3201.   DOI
27 Wang, F., Holec, D., Oden, M., et al., 2017 : Systematic ab initio investigation of the elastic modulus in quaternary transition metal nitride alloys and their coherent multilayers, Acta Materialia, 127, pp.124-132.   DOI
28 Balasubramanian, K., Khare, S. V., Gall, D., 2018 : Valence electron concentration as an indicator for mechanical properties in rocksalt structure nitrides, carbides and carbonitrides, Acta Materialia, 152, pp.175-185.   DOI
29 Kim, J., Suh, Y. J., 2017 : Temperature- and pressure-dependent elastic properties, thermal expansion ratios, and minimum thermal conductivities of ZrC, ZrN, and Zr (C0.5N0.5), Ceramics International, 43(15), pp.12968-12974.   DOI
30 Guillermet, A. F., Haglund, J., Grimvall, G., 1992 : Cohesive properties of 4d transition-metal carbides and nitrides in the NaCl-type structure, Physical Review B, 45(20), pp.11557-11567.   DOI
31 Born, M., Huang, K., Lax, M., 1955 : Dynamical theory of crystal lattices, American Journal of Physics, 23(7), pp.474.   DOI
32 Haglund, J., Grimvall, G., Jarlborg, T., et al., 1991 : Band structure and cohesive properties of 3d transition-metal carbides and nitrides with the NaCl-type structure, Physical Review B, 43(18), pp.14400-14408.   DOI
33 Kim, J., Kim, M., Roh, K. M., et al., 2019 : Bond characteristics, mechanical properties, and high-temperature thermal conductivity of (Hf1-xTax)C composites, Journal of the American Ceramic Society, 102(10), pp.6298-6308.   DOI