Browse > Article
http://dx.doi.org/10.7844/kirr.2016.25.3.82

A Comparison of the Discharged Products in Environmentally Benign Li-O2 and Na-O2 Batteries  

Kang, Jungwon (Advanced Materials Division, Korea, Research Institute of chemical Technology (KRICT))
Publication Information
Resources Recycling / v.25, no.3, 2016 , pp. 82-87 More about this Journal
Abstract
The discharged products of Li-$O_2$ and Na-$O_2$ batteries using ether-based electrolyte as next-generation battery system were analyzed. The morphology of the discharged products showed millet-like shape in the both battery systems by FESEM. However, the discharged product, $Li_2O_2$ showed amorphous-like form in the Li-$O_2$ cell while crystalline $NaO_2$ is formed in the Na-$O_2$ cell when confirmed by X-ray diffraction. In this work, we comprehended a principle operating mechanism of Li-$O_2$ and Na-$O_2$ battery.
Keywords
lithium-oxygen battery; sodium-oxygen battery; electrode; carbon;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N.-S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y.-K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho, and P. G. Bruce, 2012 : Challenges facing lithium batteries and electrical double-layer capacitors, Angew. Chem. Int. Ed., 51, pp9994-10024   DOI
2 P. G. Bruce, S. A. Freunberger, L. J. Hardwick, and J.-M. Tarascon, 2012 : $Li-O_2$ and Li-S batteries with high energy storage, Nat. Mater., 11, pp19-29   DOI
3 L. Lu,X. Han,J. Li,J. Hua, and M. Ouyang, 2013 : A review on the key issues for lithium-ion battery management in electric vehicles, J. Power sources, 226, pp272-288   DOI
4 V. Etacheri, R. Marom, R. Elazari, G. Salitra, and D. Aurbach, 2011 : Challenges in the development of advanced Li-ion batteries: a review, Energy Environ. Sci., 4, pp3243-3262   DOI
5 F. Li, T. Zhang, and H. Zhou, 2013 : Challenges of non-aqueous $Li-O_2$ batteries : electrolytes, catalysts, and anodes, Energy Environ. Sci., 6, pp1125-1141   DOI
6 G. Girishkumar, B. McCloskey, A. C. Luntz, S. Swanson, and W. Wilcke, 2010 : Lithium-Air Battery: Promise and Challenges, J. Phys. Chem. Lett., 1, pp2193-2203   DOI
7 Y.-C. Lu, B. M. Gallant, D. G. Kwabi, J. R. Harding, R. R. Mitchell, M. S. Whittingham, Y. Shao-Horn, 2013 : Lithium-Oxygen Batteries: Bridging Mechanistic Understanding and Battery Performance, Energy Environ. Sci., 6, pp750-768   DOI
8 R. Pinedo, D. A. Weber, B. Bergner, D. Schroder, P. Adelhelm, and J. Janek, 2016 : Insights into the Chemical Nature and Formation Mechanisms of Discharge Products in $Na-O_2$ Batteries by Means of Operando X-ray Diffraction, J. Phys. Chem. C, 120, pp8472-8481   DOI
9 C. L. Bender, D. Schrcder, R. Pinedo, P. Adelhelm, and J. Janek, 2016 : One- or Two- Electron Transfer? The Ambiguous Nature of the Discharge Products in Sodium-Oxygen Batteries, Angew. Chem. Int. Ed., 55, pp4640-4649   DOI
10 I. Landa-Medrano, C. Li, N. Ortiz-Vitoriano, I. R. de Larramendi, J. Carrasco, and T. Rojo, 2016 : Sodium−Oxygen Battery: Steps Toward Reality, J. Phys. Chem. Lett., 7, pp1161-1166   DOI
11 B. D. McCloskey, J. M. Garcia, and A. C. Luntz, 2014 : Chemical and Electrochemical Differences in Nonaqueous $Li-O_2$ and $Na-O_2$ Batteries, J. Phys. Chem. Lett., 5, pp1230-1235   DOI
12 R. R. Mitchell, B. M. Gallant, C. V. Thompsona, and Y. Shao-Horn, 2011 : All-carbon-nanofiber electrodes for high-energy rechargeable $Li-O_2$ batteries, Energy Environ. Sci., 4, pp2952-2958   DOI
13 N. Ortiz-Vitoriano, T. P. Batcho, D. G. Kwabi, B. Han, N. Pour, K. P. C. Yao, C. V. Thompson, and Y. Shao-Horn, 2015 : Rate-Dependent Nucleation and Growth of $NaO_2$ in $Na-O_2$ Batteries, J. Phys. Chem. Lett., 6, pp2636-2643   DOI
14 M. Leskes, N. E. Drewett, L. J. Hardwick, P. G. Bruce, G. R. Goward, and C. P. Grey, 2012 : Direct Detection of Discharge Products in Lithium-Oxygen Batteries by Solid-State NMR Spectroscopy, Angew. Chem. Int. Ed., 124, pp8688-8691   DOI
15 F. Tian, M. D. Radin, and D. J. Siegel, 2014 : Enhanced Charge Transport in Amorphous $Li_2O_2$, Chem. Mater., 26, 2952-2959   DOI