Browse > Article

Improvement of Nitrogen Use Efficiency for Sustainable and Productive Agriculture  

Chang, Ancheol (Department of Agricultural Biotechnology, National Academy of Agricultural Science & Technology, Rural Development Administration)
Choi, Ji-Young (Technology Cooperation Bureau, Rural Development Administration)
Park, Soon-Ki (Division of Plant Biosciences, Kyungpook National University)
Kim, Dong-Hern (Department of Agricultural Biotechnology, National Academy of Agricultural Science & Technology, Rural Development Administration)
Bae, Shin-Chul (Department of Agricultural Biotechnology, National Academy of Agricultural Science & Technology, Rural Development Administration)
Publication Information
Korean Journal of Breeding Science / v.43, no.5, 2011 , pp. 349-359 More about this Journal
Abstract
Agriculture plays a vital role in the sustenance of human society and is the fundamental of developing economies. Nitrogen is one of the most critical inputs that define crop productivity. To ensure better value for investment as well as to minimize the adverse impacts of the accumulative nitrogen species in environment, improving nitrogen use efficiency of crop plants is of key importance. Efforts have been made to study the genetic and molecular biological basis as well as the biochemical mechanisms involved in nitrogen uptake, assimilation, translocation and remobilization in crops and model plants. This review gives an overview of metabolic, enzymatic, genetic and biotechnological aspects of nitrogen uptake, assimilation, remobilization and regulation. This review presents the complexity of nitrogen use efficiency and the need for an integrated approach combining physiology, quantitative trait genetics, system biology, soil science, ecophysiology and biotechnological interventions to improve nitrogen use efficiency.
Keywords
Nitrogen use efficiency; Assimilation; Remobilization; Transgenic; Biotechnology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Almagro A, Lin S, Tsay Y. 2008. Characterization of the Arabidopsis nitrate transporter NRT1.6 reveals a role of nitrate in early embryo development. The Plant Cell. 20:3289-3299.   DOI   ScienceOn
2 Ameziane R, Bernhard K, Lightfoot D. 2000. Expression of the bacterial gdhA gene encoding a NADPH glutamate dehydrogenase in tobacco affects plant growth and development. Plant Soil. 221:47-57.   DOI   ScienceOn
3 Asano T, Wakayama M, Aoki N, Komatsu S, Ichikawa H, Hirochika H, Ohsugi R. 2010. Overexpression of a calcium-dependent protein kinase gene enhances growth of rice under low-nitrogen conditions. Plant Biotechnology. 27:369-373.   DOI   ScienceOn
4 Baena-Gonzalez E, Rolland F, Thevelein JM, Sheen J. 2007. A central integrator of transcription networks in plant stress and energy signalling. Nature. 448:938-942.   DOI   ScienceOn
5 Bernard SM, Habash DZ. 2009. The importance of cytosolic glutamine synthetase in nitrogen assimilation and recycling. New Phytologist. 182:608-620.   DOI   ScienceOn
6 Bi YM, Kant S, Clarke J, Gidda S, Ming F, Xu J, Rochon A, Shelp BJ, Hao L, Zhao R, Mullen RT, Zhu T, Rothstein SJ. 2009. Increased nitrogen-use efficiency in transgenic rice plants over-sxpressing anitrogen-responsive early nodulin gene identified from rice expression profiling. Plant, Cell & Environment. 32:1749-60.   DOI   ScienceOn
7 Brears T, Liu C, Knight TJ, Coruzzi GM. 1993. Ectopic overexpression of asparagine synthetase in transgenic tobacco. Plant Physiol. 103:1285-1290.
8 Buchanan-Wollaston V, Earl S, Harrison E, et al. 2003. The molecular analysis of leaf senescence a genomics approach. Plant Biotechnology Journal. 1:3-22.
9 Cai H, Zhou Y, Xiao J, Li X, Zhang Q, Lian X. 2009. Overexpressed glutamine synthetase gene modifies nitrogen metabolism and abiotic stress responses in rice. Plant Cell Rep. 28:527-537.   DOI   ScienceOn
10 Castaings L, Camargo A, Pocholle D, et al. 2009. The nodule inception-like protein 7 modulates nitrate sensing and metabolism in Arabidopsis. The Plant Journal. 57: 426-435.   DOI   ScienceOn
11 Chiu CC, Lin CS, Hsia AP, Su RC, Lin HL, Tsay YF. 2004. Mutation of a nitrate transporter, AtNRT1:4, results in a reduced petiole nitrate content and altered leaf development. Plant and Cell Physiology. 45:1139-1148.   DOI
12 Chopin F, Orsel M, Dorbe MF, et al. 2007. The Arabidopsis ATNRT2.7 nitrate transporter controls nitrate content in seeds. The Plant Cell. 19:1590-1602.   DOI   ScienceOn
13 Crete P, Caboche M, Meyer C. 1997. Nitrite reductase expression is regulated at the post-transcriptional level by the nitrogen source in Nicotiana plumbaginifolia and Arabidopsis thaliana, Plant J. 11:625-634.   DOI   ScienceOn
14 Curtis IS, Power JB, de Llat AAM. 1999. Expression of chimeric nitrate reductase gene in transgenic lettuce reduces nitrate in leaves. Plant Cell Rep. 18:889-896.   DOI   ScienceOn
15 Das SK, Pathak RR, Choudhury D, Raghuram N. 2007. Genomewide computational analysis of nitrate response elements in rice and Arabidopis. Molecular Genetics and Genomics. 278:519-525.   DOI   ScienceOn
16 Diaz C, Lemaismlrnre smlrtre T, Christ C, et al. 2008. Nitrogen recycling and remobilization are differentially controlled by leaf senescence and development stage in Arabidopsis under low nitrogen nutrition. Plant Physiology. 147:1437-1449.   DOI   ScienceOn
17 Djannane S, Chauvin JE, Meyer, C. 2002. Glasshouse behaviour of eight transgenic potato clones with a modified nitrate reductase expression under two fertilization regimes. J. Exp. Bot. 53:1037-1045.   DOI
18 Ferrario-Mery S, Valadier MH, Foyer C. 1998. Overexpression of nitrate reductase in tobacco delays droughtinduced decreases in nitrate reductase activity and mRNA. Plant Physiol. 117:293-302.   DOI
19 Ferrario-Mery S, Valadier MH, Godefroy N, Miallier D, Hirel B, Foyer CH, Suzuki A. 2002. Diurnal changes in ammonia assimilation in transformed tobacco plants expressing ferredoxin-dependent glutamate synthase mRNA in the antisense orientation. Plant Sci. 163:59-67.   DOI   ScienceOn
20 Filleur S, Dorbe M, Cerezo M, et al. 2001. An arabidopsis T-DNA mutant affected in Nrt2 genes is impaired in nitrate uptake. FEBS Letters. 489:220-224.   DOI
21 Fraisier V, Gojon A, Tillard P, Daniel-Vedele F. 2000. Constitutive expression of a putative high affinity nitrate transporter in Nicotiana plumbaginifolia: evidence for a post transcriptional regulation by a reduced nitrogen source. The Plant Journal. 23:489-496.   DOI   ScienceOn
22 Fuentes SI, Allen DJ, Ortiz-Lopez A, Hernandez G. 2001. Over-expression of cytosolic glutamine synthetase increases photosynthesis and growth at low nitrogen concentrations. J. Exp. Bot. 52:1071-1081.   DOI
23 Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, von Wiren N. 1999. Three functional transporters for constitutive, diurnally regulated, and starvation induced uptake of ammonium into Arabidopsis roots. The Plant Cell. 11:937-947.
24 Good AG, Johnson SJ, De Pauw M. 2007. Engineering nitrogen use efficiency with alanine aminotransferase. Canadian Journal of Botany. 85:252-262.   DOI   ScienceOn
25 Good AG, Shrawat AK, Muench DG. 2004. Can less yield more? Is reducing nutrient input into the environment compatible with maintaining crop production? Trends in Plant Science. 9:597-605.   DOI   ScienceOn
26 Guo Y, Cai Z, Gan S. 2004. Transcriptome of Arabidopsis leaf senescence. Plant Cell and Environment. 27:521-549.   DOI   ScienceOn
27 Habash DZ, Massiah AJ, Rong HL, Wallsgrove RM, Leigh RA. 2001. The role of cytosolic glutamine synthetase in wheat. Ann. Appl. Biol. 138:83-89.   DOI   ScienceOn
28 Herrera-Rodriguez MB, Maldonado JM, Perez-Vicente R. 2006. Role of asparagine and asparagine synthetase genes in sunflower (Helianthus annuus) germination and natural senescence. Journal of Plant Physiology. 163:1061-1070.   DOI   ScienceOn
29 Hirel B, Le Gouis J, Ney B, Gallais A. 2007. The challenge of improving nitrogen use efficiency in crop plants: towards a more central role for genetic variability and quantitative genetics within integrated approaches. Journal of Experimental Botany. 58:2369-2387.   DOI   ScienceOn
30 Hirner A, Ladwig F, Stransky H, et al. 2006. Arabidopsis LHT1 is a highaffinity transporter for cellular amino acid uptake in both root epidermis and leaf mesophyll. The Plant Cell. 18:1931-1946.   DOI   ScienceOn
31 Ho C, Lin S, Hu H, Tsay Y. 2009. CHL1 functions as a nitrate sensor in plants. Cell. 18:1184-1194.
32 Hoshida H, Tanaka Y, Hibino T, et al. 2000. Enhanced tolerance to salt stress in transgenic rice that overexpresses chloroplast glutamine synthetase. Plant Molecular Biology. 43:103-111.   DOI   ScienceOn
33 Hoque MS, Masle J, Udvardi MK, Ryan PR, Upadhyaya NM. 2006. Over-expression of the rice OsAMT1-1 gene increases ammonium uptake and content, but impairs growth and development of plants under high ammoniun nutrition. Functional Plant Biology. 33:153-163.   DOI   ScienceOn
34 Hu HC, Wang YY, Tsay YF. 2009. AtCIPK8, a CBLinteracting protein kinase, regulates the low-affinity phase of the primary nitrate response. The Plant Journal. 57: 264-278.   DOI   ScienceOn
35 Huang NC, Liu KH, Lo HJ, Tsay YF. 1999. Cloning and functional characterization of an Arabidopsis nitrate transporter gene that encodes a constitutive component of low-affinity uptake. The Plant Cell. 11:1381-1392.
36 Ishiyama K, Inoue E, Watanabe-Takahashi A, Obara M, Yamaya T, Takahashi H. 2004. Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis. The Journal of Biological Chemistry. 279:16598-16605.   DOI
37 Kichey T, Hirel B, Heumez E, Dubois F, Le Gouis J. 2007. In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilization to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crop Research. 102:22-32.   DOI   ScienceOn
38 Kisaka H, Kida T, Miwa T. 2007. Transgenic tomato plants that overexpress a gene for NADH-dependent glutamate dehydrogenase (legdh1). Breed. Sci. 57:101-106.   DOI   ScienceOn
39 Kozaki A, Takeba G. 1996. Photorespiration protects C3 plants from photooxidation. Nature. 384:557-560.   DOI   ScienceOn
40 Lam HM, Wong P, Chan HK, et al. 2003. Overexpression of the ASN1 gene enhances nitrogen status in seeds of Arabidopsis. Plant Physiology. 132:926-935.   DOI   ScienceOn
41 Lea PJ, Forde BG. 1994. The use of mutants and transgenic plants to study amino acid metabolism Plant, Cell & Environment. 17:541-556.   DOI   ScienceOn
42 Lightfoot DA. 2009. Genes for improving nitrate use efficiency in crops. p.167-184. In Jenks M.A. and Woods A.J. (ed.) Genes for Plant Abiotic Stress. Wiley-Blackwell , Ames, IA.
43 Lillo C. 2008. Signalling cascades integrating light-enhanced nitrate metabolism. Biochemical Journal. 415:11-19.   DOI   ScienceOn
44 Lin SH, Kuo HF, Canivenc G, et al. 2008. Mutation of the Arabidopsis NRT1.5 nitrate transporter causes defective root-to-shoot nitrate transport. The Plant Cell. 20:2514-2528.   DOI   ScienceOn
45 Limami MA, et al. 1999. Does root glutamine synthetase control plant biomass production in Lotus japonicus L.? Planta. 209:495-502.   DOI   ScienceOn
46 Liu KH, Huang CY, Tsay YF. 1999. CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell. 11:865-874.
47 Mae T, Makino A, Ohira K. 1983. Changes in the amounts of ribulose biphosphate carboxylase synthesized and degraded during the life span of rice leaf (Oryza sativa L.). Plant and Cell Physiology. 24:10791086.
48 Martin A, Belastegui-Macadam X, QuillereI, et al. 2005. Nitrogen management and senescence in two maize hybrids differing in the persistence of leaf greenness: agronomic, physiological and molecular aspects. New Phytologist. 167:483-492.   DOI   ScienceOn
49 Martin A, Lee J, Kichey T, et al. 2006. Two cytosolic glutamine synthetase isoforms of maize are specifically involved in the control of grain production. The Plant Cell. 18:3252-3274.   DOI   ScienceOn
50 Masclaux C, Quillere' I, Gallais A, Hirel B. 2001. The challenge of remobilization in plant nitrogen economy. A survey of physio-agronomic and molecular approaches. Annals of Applied Biology. 138:68-81.
51 Masclaux-Daubresse C, Carrayol E, Valadier M-H. 2005. The two nitrogen mobilisation- and senescence-associated GS1 and GDH genes are controlled by C and N metabolites. Planta. 221:580-588.   DOI   ScienceOn
52 Masclaux-Daubresse C, Reisdorf-Cren M, Orsel M. 2008. Leaf nitrogen remobilisation for plant development and grain filling. Plant Biology. 10:23-36.
53 Na"sholm T, Kielland K, Ganeteg U. 2009. Uptake of organic nitrogen by plants. New Phytologist. 182:31-48.   DOI   ScienceOn
54 Meyer C, Stitt M. 2001. Nitrate reductase and signalling. p. 37-59. In Lea PJ, Morot-Gaudry J-F (ed.) Plant nitrogen. Springer, New York.
55 Migge A, Carrayol E, Hirel B, Becker TW. 2000. Leaf specific overexpression of plastidic glutamine synthetase stimulates the growth of transgenic tobacco seedlings. Planta. 2:252-260.
56 Mungur R, Glass ADM, Goodenow DB, Lightfoot DA. 2005. Metabolite fingerprinting in transgenic Nicotiana tabacum altered by the Escherichia coli glutamate dehydrogenase gene. J. Biomed. Biotechnol. 2:198-214.
57 Obara M, Kajiura M, Fukuta Y, et al. 2001. Mapping of QTLs associated with cytosolic glutamine synthetase and NADH-glutamate synthase in rice (Oryza sativa L.). Journal of Experimental Botany. 52:1209-1217.   DOI
58 ObaraM, Sato T, Sasaki S, et al. 2004. Identification and characterization of a QTL on chromosome 2 for cytosolic glutamine synthetase content and panicle number in rice. Theoretical and Applied Genetics. 110:1-11.   DOI   ScienceOn
59 Oliveira IC, Brears T, Knight TJ, Clark A, Coruzzi GM. 2002. Overexpression of cytosolic glutamate synthetase. Relation to nitrogen, light, and photorespiration. Plant Physiol. 129:1170-1180.   DOI   ScienceOn
60 Pathak RR, Ahmad A, Lochab S, Raghuram N. 2008. Molecular physiology of plant N-use efficiency and biotechnological options for its enhancement. Current Science. 94:1394-1403.
61 Rentsch D, Schmidt S, Tegeder M. 2007. Transporters for uptake and allocation of organic nitrogen compounds in plants. FEBS Letters. 581:2281-2289.   DOI   ScienceOn
62 Scheible WR, MorcuendeR, Czechowski T, et al. 2004. Genome-wide reprogramming of primary and secondary metabolism, protein synthesis, cellular growth processes, and the regulatory infrastructure of Arabidopsis in response to nitrogen. Plant Physiology. 136:2483-2499.   DOI   ScienceOn
63 Schoenbeck MA. et al. 2000. Decreased NADH-glutamate synthase activity in nodules and flowers of alfalfa (Medicago sativa L.) transformed with an antisense glutamate synthase transgene. J. Exp. Bot. 51:29-39.   DOI
64 Suarez R, Marquez J, Shishkova S, Hernandez G. 2003. Overexpression of alfalfa cytosolic glutamine synthetase in nodules and flowers of transgenic Lotus japonicus plants. Physiol Plant. 117:326-336.   DOI   ScienceOn
65 Sentoku N, Tanignchi M, Sugiyama T, Ishimaru K, Ohsugi R, Takaiwa F, Toki S. 2000. Analysis of the transgenic tobacco plants expressing Panicum miliaceum aspartate aminotransferase genes. Plant Cell Rep. 19:598- 603.   DOI   ScienceOn
66 Shrawat AK, Carroll RT, DePauw M, et al. 2008. Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnology Journal. 6:722-732.   DOI   ScienceOn
67 Sonoda Y, Ikeda A, Saiki S, Yamaya T, Yamaguchi J. 2003. Feedback regulation of the ammonium transporter gene family AMT1 by glutamine in rice. Plant Cell and Physiology. 44:1396-1402.   DOI
68 Suzuki A, Knaff DB. 2005. Glutamate synthase: structural, mechanistic and regulatory properties, and role in the amino acid metabolism. Photosynthesis Research. 83:191- 217.   DOI   ScienceOn
69 Svennerstam H, Ganeteg U, Nasholm T. 2008. Root uptake of cationic amino acids by Arabidopsis depends on functional expression of amino acid permease 5. New Phytologist. 180:620-630.   DOI   ScienceOn
70 Takahashi M, Sasaki Y, Ida S, Morikawa H. 2001. Nitrite reductase gene enrichment improves assimilation of NO2 in Arabidopsis. Plant Physiol. 126:731-741.   DOI   ScienceOn
71 Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK. 2007. Nitrate transporters and peptide transporters. FEBS Letters. 581:2290-2300.   DOI   ScienceOn
72 Vanlerberghe GC, Turpin DH. 1990. Anaerobic metabolism in the N-limited green algae selenastrum minutum. II. Assimilation of ammonium by anaerobic cells. Plant Physiol. 94:1124-1130.   DOI   ScienceOn
73 Vincent R, et al. 1997. Over expression of a soyabean gene encoding cytosolic glutamine synthetase in shoots of transgenic Lotus cornicultus L. plants triggers changes in ammonium and plant development. Planta. 201:424-433.   DOI   ScienceOn
74 Vincentz M, CabocheM. 1991. Constitutive expression of nitrate reductase allows normal growth and development of Nicotiana plumbaginifolia plants. EMBO J. 10:1027- 1035.
75 Yanagisawa S. 2000. Dof1 and Dof2 transcription factors are associated with expression of multiple genes involved in carbon metabolism in maize. Plant J. 21:281-288.   DOI   ScienceOn
76 Wang R, Tischner R, Gutie'rrez R, et al. 2004. Genomic analysis of the nitrate response using a nitrate reductasenull mutant of Arabidopsis. Plant Physiology. 136:2512- 2522.   DOI   ScienceOn
77 Wirth J, Chopin F, Santoni V, et al. 2007. Regulation of root nitrate uptake at the NRT2.1 protein level in Arabidopsis thaliana. Journal of Biological Chemistry. 282: 23541-23552.   DOI
78 Yamaya T, Obara M, Nakajima H, Saski S, Hayakawa T, Sato T. 2002. Genetic manipulation and quantitative trait loci mapping for nitrogen recycling in rice. Journal of Experimental Botany. 53:917-925.   DOI
79 Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T. 2004. Metabolic engineering with Dof1 transcriptiion factor in plants: Improved nitrogen assimilation and growth under low-nitrogen conditions. Proc. Natl. Acad. Sci. USA. 101:7833-7838.   DOI   ScienceOn
80 Yuan L, Loque D, Ye F, Frommer WB, von Wiren N. 2007. Nitrogen-dependent posttranscriptional regulation of the ammonium transporter AtAMT1;1. Plant Physiol. 143:732-744.
81 Zhang H,Forde BG. 1998. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science. 279:407-409.   DOI
82 Zhang Y, Dickinson JR, Paul MJ, Halford NJ. 2003. Molecular cloning of an Arabidopsis homologue of GCN2, a protein kinase involved in co-ordinated response to amino acid starvation. Planta. 217:668-675.   DOI   ScienceOn