Browse > Article

Variation of Nuclear DNA Content in Interspecific Allium cepa L.×A. fistulosum L. hybrids and Their Successive Backcross Lines  

Kim, Cheol-Woo (Mokpo Sub-Station, National Institute of Horticultural & Herbal Science, RDA)
Kim, Hwa-Young (Mokpo Sub-Station, National Institute of Horticultural & Herbal Science, RDA)
Lee, Eul-Tai (Mokpo Sub-Station, National Institute of Horticultural & Herbal Science, RDA)
Choi, In-Hu (Mokpo Sub-Station, National Institute of Horticultural & Herbal Science, RDA)
Bang, Jin-Ki (Bioenergy Crop Research Center, National Institute of Crop Science, RDA)
Publication Information
Korean Journal of Breeding Science / v.41, no.4, 2009 , pp. 463-467 More about this Journal
Abstract
Interspecific hybrid plants between Allium cepa L. (2n=2X=16) and A. fistulosum L. (2n=2X=16)and their backcross lines were developed by artificial pollination in order to introduce new desirable characters of A, cepa to A. fistulosum. The 2C nuclear DNA content has been estimated by flow cytometry in 5 Allium fistulosum inbreed lines, 2 interspecific hybrid lines of A. cepa${\times}$A. fistulosum and 34 their backcross lines $BC_1F_1$ to $BC_2F_2$, using propidium iodide (PI) as a fluorescence dye. Estimated 2C DNA values ranged from 22.2 pg to 23.7 pg in 5 A. fistulosum inbreed lines, 37.9 pg in F1 hybrid between A. cepa and A. fistulosum, 24.3 pg to 27.3 pg in 7 backcross lines in $BC_1F_1$, 21.9 pg to 24.4 pg in 9 $BC_1F_2$, 22.9 pg to 25.1 pg in 14 $BC_2F_1$, 22.6 pg to 23.4 pg in 4 $BC_2F_2$. This study showed mean 2C nuclear DNA content of $F_1$ hybrid was higher than their backcross progeny lines, while it was lower than female parental line, A. cepa (2C DNA=33.2 pg). Mean 2C DNA content of backcross lines, $BC_1F_1$ to $BC_2F_2$ was not significantly different but their 2C DNA contents in the more progress generation from $BC_1F_1$ to $BC_2F_2$ were reduced.
Keywords
Allium fistulosum L. A. cepa L.; Interspecific hybrid; Backcross; Flow cytometry; 2C nuclear DNA content;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bennett MD, Smith JB. 1976. Nuclear DNA amounts in angiosperms. Phil Trans Roy Soc Lond, B. 274:227–274
2 Dolezel J, Bartos J. 2005. Plant DNA Flow Cytometry and Estimation of Nuclear Genome Size. Annals of Botany. 95:99-110   DOI   ScienceOn
3 Emsweller SL, Jones HA. 1935. An interspecific hybrid in Allium. Hilgardia. 9:265-273
4 Kang H. 1967. Studies on the interspecific hybridization between Allium fistulosum and A. cepa. J Kor Soc Hort Sci. 6:57-72.14
5 Ricroch A, Brown SC. 1997. DNA base composition of Allium genomes with different chromosome numbers. Gene. 205:255-260   DOI   PUBMED   ScienceOn
6 Umehara M, Shimomura K, Iwai M, Shigyo M, Hirashima K, Nakahara T. 2006. Interspecific hybrids between Allium fistulosum and Allium schoenoprasum reveal carotene-rich phenotype. Euphytica. 148:295-301   DOI   ScienceOn
7 Van der Meer QP, Van Vennekom JL. 1978. Improving the onion crop (Allium cepa L.) by transfer of characters from Allium fistulosum L. Biul Warzywinczy. 22:87-91
8 Wang ML, Leitch AR, Schwarzacher T, Heslop-Harrison JS, Moore G. Construction of a chromosome-enriched Hpall library from flow-sorted wheat chromosomes. Nucleic Acids Res. 20:1897-1901   DOI   ScienceOn
9 Van't Hof J. 1965. relationships between mitotic cycle duration, S period duration and the average rate of DNA synthesis in the root meristem cells of several plants. Exp Cell Res. 39:8-58   DOI   ScienceOn
10 1994Ulloa G, Corgan JN, Dunford M.1994. Chromosome characteristics and behavior differences in Allium fistulosum L., A. cepa L., their F1hybrid, and selected backcross progeny. Theor Appl Genet. 89:567–571   DOI   ScienceOn
11 Mangum PD, Peffley EB. 2005. Central cell nuclear-cytoplasmic incongruity: a mechanism for segregation distortion in advanced backcross and selfed generation of (Allium cepa L.×Allium fistulosum L.)×A. cepa interspecific hybrid derivatives. Cytogenet Genome Res. 109:400-407   DOI   ScienceOn
12 Galbraith DW, Lambert GM, Macas J, Dolezel J. 1998. Analysis of nuclear DNA content and ploidy in higher plants. In: Robinson, JP, Darzynkiewicz, Z, Dean, PN, Dressler, LG, Orfao, A, Rabinovitch, PS, Stewart, CC, Tanke, HJ, Wheeless, LL, eds. Current protocols in cytometry. New York: John Wiley & Sons. 7.6.1–7.6.22
13 Van der Valk P, Kik C, Verstappen F, Everink JT, de Vries JN. 1991. Independent segregation of two isozyme makers and inter-plant difference in nuclear DNA content in the interspecific backcross (Allium fistulosum × cepa L.) ×A. cepa L. Euphytica. 55:151-156   DOI
14 Baak EJ, Whitney KD, Rieseberg LH. 2005. Hybridization and genome size evolution: Timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New phytologist. 167:623-630   DOI   ScienceOn
15 Yamasita K, Tashiro Y. 2004. Seed production test of CMS line of Japanese bunching onion (Allium fistulosum L.) possing the cytoplasm of wild species, A. galanthum Kar. et Kir. Euphytica. 136:327-331   DOI   ScienceOn
16 Pfosser M, Heberle-Bors E, Amon A, Lelley T. 1995. Evaluation of sensitivity of flow cytometry in detecting aneuploidy in wheat using disomic and ditelosomic wheat-rye addition lines. Cytometry. 21:387-393   DOI   ScienceOn
17 Khrustaleva LI and Kik C. 1998. Cytogenetic studies in the bridge cross Allium cepa×(A. fistulosum×A. roylei). Theor. Appl. Genet. 96:8-14   DOI   ScienceOn
18 Ulloa G, Corgan JN, Dunford M. 1995. Evidence for nuclear cytoplasmic incompatibility between Allium fistulosum and A. cepa. Theor Appl Genet. 90:746-754   DOI   ScienceOn