Browse > Article
http://dx.doi.org/10.14456/apjcp.2016.155/APJCP.2016.17.8.3675

Moringa oleifera Lam: Targeting Chemoprevention  

Karim, Nurul Ashikin Abd (Laboratory of UPM-MAKNA Cancer Research, Institute of Bioscience)
Ibrahim, Muhammad Din (Laboratory of UPM-MAKNA Cancer Research, Institute of Bioscience)
Kntayya, Saie Brindha (Laboratory of UPM-MAKNA Cancer Research, Institute of Bioscience)
Rukayadi, Yaya (Faculty of Food Science and Technology, Universiti Putra Malaysia, UPM Serdang)
Hamid, Hazrulizawati Abd (Faculty of Industrial Sciences & Technology, Universiti Malaysia Pahang)
Razis, Ahmad Faizal Abdull (Laboratory of UPM-MAKNA Cancer Research, Institute of Bioscience)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.17, no.8, 2016 , pp. 3675-3686 More about this Journal
Abstract
Moringa oleifera Lam, family Moringaceae, is a perennial plant which is called various names, but is locally known in Malaysia as ''murungai'' or ''kelor''. Glucomoringin, a glucosinolate with from M. oleifera is a major secondary metabolite compound. The seeds and leaves of the plant are reported to have the highest amount of glucosinolates. M. oleifera is well known for its many uses health and benefits. It is claimed to have nutritional, medicinal and chemopreventive potentials. Chemopreventive effects of M. oleifera are expected due to the existence of glucosinolate which it is reported to have the ability to induce apoptosis in anticancer studies. Furthermore, chemopreventive value of M. oleifera has been demonstrated in studies utilizing its leaf extract to inhibit the growth of human cancer cell lines. This review highlights the advantages of M. oleifera targeting chemoprevention where glucosinolates could help to slow the process of carcinogenesis through several molecular targets. It is also includes inhibition of carcinogen activation and induction of carcinogen detoxification, anti-inflammatory, anti-tumor cell proliferation, induction of apoptosis and inhibition of tumor angiogenesis. Finally, for synergistic effects of M. oleifera with other drugs and safety, essential for chemoprevention, it is important that it safe to be consumed by human body and works well. Although there is promising evidence about M. oleifera in chemoprevention, extensive research need to be done due to the expected rise of cancer in coming years and to gain more information about the mechanisms involved in M. oleifera influence, which could be a good source to inhibit several major mechanisms involved in cancer development.
Keywords
Moringa oleifera; glucosinolate; glucomoringin; chemopreventive;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Saha D (2013). Moringa species ( Moringaceae ): phytochemistry, cancer chemoprevention potentials with advanced traditional medicinal practice. J Natural App Sc (Tanzania), 1, 634-6.
2 Santos AFS, Argolo ACC, Coelho LCBB, et al (2005). Detection of water soluble lectin and antioxidant component from Moringa oleifera seeds. Water Res, 39, 975-80.   DOI
3 Sarker KP, Obara S, Nakata M, et al (2000). Anandamide induces apoptosis of PC-12 cells: involvement of superoxide and caspase-3. FEBS Letter, 472, 39-44.   DOI
4 Saravanan BC, Sreekumar C, Bansal GC, et al (2003). Arapid MTT colorimetric assay to assess the proliferation index of two Indian strains of Theileria annulata. Veterinary Parasit, 113, 211-6.   DOI
5 Sauberlich HE (1984). Implications of nutritional status on human biochemistry, physiology, and health. Clin Biochem, 17, 132-142.   DOI
6 Schliephacke T, Meinl A, Kratzmeier M, et al (2004). The telomeric region is excluded from nucleosomal fragmentation during apoptosis, but the bulk nuclear chromatin is randomly degraded. Cell Death Differ, 11, 693-700.   DOI
7 Severin I, Dumont C, Jondeau-Cabaton A, et al (2010). Genotoxic activities of the food contaminant 5-hydroxymethylfurfural using different in vitro bioassays. Toxicol Letters, 192, 189-94.   DOI
8 Shah V, Shah S, Shah H, et al (2012). Antibacterial activity of polymer coated cerium oxide nanoparticles. PLoS One, 7, 47827.   DOI
9 Sharma V, Paliwal R, Janmeda P, et al (2012). Renoprotective effects of Moringa oleifera pods in 7, 12 dimethylbenz[a] Medicinal plants from Riau province, Sumatra, Indonesia. J Chin Int Med, 10, 1171-8.
10 Srivastava SK, Singh SV (2004). Cell cycle arrest, apoptosis induction and inhibition of nuclear factor kappa B activation in anti-proliferative activity of benzyl isothiocyanate against human pancreatic cancer cells. Carcinogenesis, 9, 701-9.
11 Srivastava JK, Gupta S (2006). Tocotrienol-rich fraction of palm oil induces cell cycle arrest and apoptosis selectively in human prostate cancer cells. Biochem Biophys Res Commun, 346, 447-53.   DOI
12 Sirintip B, Chaniphun B, Siriporn T, et al (2011). Suppressive effects of Moringa oleifera Lam pod against mouse colon carcinogenesis induced by azoxymethane and dextran sodium sulfate. Asian Pac J Cancer Prev, 12, 3221-28.
13 Sharma V, Paliwal R, Janmeda P, et al (2012). Chemopreventive Efficacy of Moringa oleifera Pods Against 7, 12-Dimethylbenz[a]anthracene Induced Hepatic Carcinogenesis in Mice. Asian Pac J Cancer Prev, 13, 2563-69.   DOI
14 Sharma V, Paliwal R (2012). Chemoprotective role of Moringa oleifera and its isolated saponin against DMBA induced tissue damage in male mice: A histopathological analysis. Int J Drug Dev Res, 4, 215-28
15 Shruti N, Varalakshmi KN (2011). Anticancer, cytotoxic potential of Moringa oleifera extracts on HeLa cell line, J Nat Pharm, 3, 234-7.
16 Sreelatha SA, Jeyachitra B, Padma PR (2011). Antiproliferation and induction of apoptosis by Moringa oleifera leaf extraction human cancer cells. Food Chem Toxicol, 6, 1270-5.
17 Tahir K, Tahira M, Haq IU (2010). Moringa oleifera: a natural gift-A review, 2, 775-81.
18 Soslow R, Dannenberg A, Rush D, et al (2000). Cox-2 is expressed in human pulmonary colonic and mammary tumors. Cancer, 89, 2637-45.   DOI
19 Sporn MB (1976). Approaches to prevention of epithelial cancer during preneoplastic period. Cancer Res, 36, 2699-702.
20 Suphachai C (2014). Antioxidant and anticancer activities of Moringa oleifera leaves. J Med Plant Res, 7, 318-25.
21 Tanaka T, (2013). Role of Apoptosis in the Chemoprevention of Cancer. J Exp Clin Med, 5, 89-91.   DOI
22 Thatte U, Bagadey S, Dahanukar S (2000). Modulation of programmed cell death by medicinal plants. Cell Mol Biol, 46, 199-14.
23 Thompson CB (1995). Apoptosis in the pathogenesis and treatment of disease. Science, 267, 1456-62.   DOI
24 Trees for Life (2005). Moringa Book [Brochure]. Wichita, Kansas: Balbir Mathur.
25 Vasanth K, Ilango K, Mohan K, et al (2014). Anticancer activity of Moringa oleifera mediated silver nanoparticles on human cervical carcinoma cells by apoptosis induction. Biointerfaces, 117, 354-9.   DOI
26 Rollin P, Tatibouet A (2011). Glucosinolates: The synthetic approach. Comptes Rendus Chim, 14, 194-210.   DOI
27 Ray K, Hazrai R, Guha D (2003). Central inhibitory effect of Moringa oleifera root extract: possible role of neurotransmitters. Indian J Exp Biol, 41, 1279–84.
28 Ray K, Hazra R, Debnath PK, et al (2004). Role of 5-hydroxytryptamine in Moringa oleifera induced potentiation of pentobarbitone hypnosis in albino rats. Indian J Exp Biol, 42, 632-5.
29 Repnik U, Stoka V, Turk V, et al (2012). Lysosomes and lysosomal cathepsins in cell death. Biochim Biophys Acta, 10, 22-33.
30 Rupjyoti B, Jawahira T, Mohammed RHA (2003). Chemomodulatory effect of Moringa oleifera on hepatic carcinogen metabolizing enzymes, antioxidant parameters and skin papillomagenesis in mice. Asian Pac J Prev, 4, 131-9.
31 Fischer U, Janicke RU, Schulze-Osthoff K (2003). Many cuts to ruin: a comprehensive update of caspase substrates. Cell Death Differ, 10, 76-100.   DOI
32 Verma AR, Vijayakumar M, Mathela CS, et al (2009). In vitro and in vivo antioxidant properties of different fractions of Moringa oleifera leaves. Food Chem Toxicol, 47, 2196-201.   DOI
33 Durling LJK, Busk L, Hellman BE (2006). Evaluation of the DNA damaging effect of the heat-induced food toxicant 5-hydroxymethylfurfural (HMF) in various cell lines with different activities of sulfotransferases. Food Chem Toxicol, 47, 880-4.
34 Eilert UB, Wolters A, Nahrstedt, et al (1981).The antibiotic principle of seeds of Moringa oleifera and Moringa stenopetala. Planta Med, 42, 55-61   DOI
35 Faizi S, Siddiqui B, Saleem R, et al (1994). Isolation and structure elucidation of new nitrile and mustard oil glycosides from Moringa oleifera and their effect on blood pressure. J Nat Prod, 57, 1256-61.   DOI
36 Fan CD, Jiang J, Yin X, et al (2012). Purification of seleniumcontaining allophycocyanin from selenium-enriched Spirulina platensis and its hepatoprotective effect against t-BOOH-induced apoptosis. Food Chem, 34, 253-61.
37 Ashkenazi Avi (2008). Targeting the extrinsic apoptosis pathway in cancer. Cytokine Growth Factor rev, 3, 325-31.
38 Nada Y, Kalaany, Sabatini DM (2008). NIH Public Access, 2, 157-62.
39 Ali EN, Musa N (2013). An investigation of anticancer effect of Moringa oleifera. ISSB 2013.
40 Asare GA, Gyan B, Bugyei K, et al (2012). Toxicity potentials of the nutraceutical Moringa oleifera at supra-supplementation levels. J Ethnopharmacol, 139, 265-72.   DOI
41 Baba AI, Catoi C (2007) Comparative oncology. bucharest: the publishing house of the romanian academy.
42 Barillari J, Gueyrard D, Rollin P, et al (2001). Barbarea verna as a source of 2-phenylethyl glucosinolate precursor of cancer chemopreventive phenylethyl isothiocyanate. Fitoterapia, 72, 760-764.   DOI
43 Bharali R, Tabassum J, Azad MRH (2003). Chemomodulatory effect of Moringa oleifera Lam, on hepatic carcinogen metabolising enzymes, antioxidant parameters and skin papillomagenesis in mice. Asian Pacific J Cancer Prev, 4, 131-9.
44 Wen S, Niu Y, Lee SK, et al (2014). Androgen receptor (AR) positive vs negative roles in prostate cancer cell deaths including apoptosis, anoikis, entosis, necrosis and autophagic cell death. Cancer Treat Rev, 1, 31-40.
45 Boghossian S, Hawash A (2012). Chemoprevention in colorectal cancer-where we stand and what we have learned from twenty year's experience. Surgeon, 10, 43-52.   DOI
46 Veena S, Ritu P, Pracheta J, et al (2012). Chemopreventive efficacy of Moringa oleifera pods against 7, 12-dimethylbenz(a) anthracene induced hepatic carcinogenesis in mice. Asian Pac J Cancer Prev, 13, 2563-9.   DOI
47 Wang Y, Liu C, Luo M, et al (2015). Chemotherapy-induced miRNA-29c/catenin-signaling suppresses metastasis in gastric cancer. Cancer Res. 75, 1332-44.   DOI
48 Wang SV, Jiao H (2001). Changes in oxygen-scavenging systems and membrane lipid peroxidation during maturation and ripening in black berry. J Agric Food Chem, 49, 1612-9.   DOI
49 Waterman C, Cheng DM, Rojas-Silva P, et al (2014). Stable, water extractable isothiocyanates from Moringa oleifera leaves attenuate inflammation in vitro. Phytochem, 103, 114-22.   DOI
50 Wu G (2010). Functional Amino Acids in Growth. Adv Nutr, 1, 31-37.   DOI
51 Wu S, Teik L, Lin C (2005). Effects of antioxidants and caspase-3 inhibitor on the phenylethyl isothiocyanateinduced apoptotic signaling pathways. Europ J Pharmacol, 518, 96-106.   DOI
52 Wu X, Patterson S, Hawk E (2011). Chemoprevention history and general principles. Best Pract Res Clin Gastroenterol, 25, 445-59.   DOI
53 Yang LL, Lee CY, Yen KY (2000). Induction of apoptosis by hydrolysable tannin from Eugenia jambos L. On human leukemia cells. Cancer Letters, 157, 65-7.   DOI
54 Galuppo M, Nicola GRD, Iori R, et al (2013). Antibacterial activity of glucomoringin bioactivated with myrosinase against two important pathogens affecting the health of long-term patients in hospitals. Molecules, 18, 14340-8.   DOI
55 Flora SJS, Pachauri V (2011). Nuts and Seeds in Health and Disease Prevention. Divis Pharmacol Toxic, 775-85.
56 Forster N, Ulrichs C, Schreiner M, et al (2015) Development of a reliable extraction and quantification method for glucosinolates in Moringa oleifera. Food Chem, 166, 456- 64.   DOI
57 Foti Cuzzola V, Galuppo M, Iori R, et al (2013). Beneficial effects of (RS)-glucoraphanin on the tight junction dysfunction in a mouse model of restraint stress. Life Sci, 93, 288-305   DOI
58 Fulda S, Debatin KM (2006). Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene, 34, 4798- 881.
59 Fuglie LJ (1999). The miracle tree: moringa oleifera. natural nutrition for the tropics. church world service, dakar. revised in 2001 and published as the miracle Tree. Multiple Attributes Moringa, 68, 172.
60 Galuppo M, Nicola GRD, Iori R, et al (2014). Antiinflammatory activity of glucomoringin isothiocyanate in a mouse model of experimental autoimmune encephalomyelitis. Fitoterapia, 95, 160-74.   DOI
61 Chadamas P, Piengchai K, Siriporn T, et al (2010). Nutritive evaluation and effect of Moringa oleifera pod on clastogenic potential in the mouse. Asian Pac J Cancer Prev, 11, 627-32.
62 Brunelli DA, Tavecchio M, Falcioni C, et al (2010). The isothiocyanate produced from glucomoringin inhibits NF-${\kappa}B$ and reduces myeloma growth in nude mice in vivo. Biochem Pharmacol, 79, 1141-8.   DOI
63 Budda S, Butryee C, Tuntipopipat S, et al (2011). Suppressive effects of Moringa oleifera lam pod against mouse colon carcinogenesis induced by azoxymethane and dextran sodium sulfate. Asian Pac J Cancer Prev, 12, 3221-8.
64 Butryee C (2010). Nutritive evaluation and effect of moringa oleifera pod on clastogenic potential in the mouse. Asian Pac J Cancer Prev, 11, 627-32.
65 Charlette T, Alisa P, Anil AC (2013). The antiproliferative effect of Moringa oleifera crude aqueous leaf extract on cancerous human alveolar epithelial cells. Bmc Complem Altern M, 13, 226.   DOI
66 Circu ML, Aw TY (2010). Reactive oxygen species, cellular redox systems, and apoptosis. Free Rad Biol Med, 48, 749-62.   DOI
67 Chumark P, Khunawat P, Sanvarinda Y, et al (2008). The in vitro and ex vivo antioxidant properties, hypolipidaemic and antiatherosclerotic activities of water extract of Moringa oleifera Lam. leaves. J Ethnopharmacol, 3, 439-46.
68 Cory S, Adams JM (2002). The Bcl-2 family: Regulators of the cellular life-or-death switch. Nat Rev Cancer, 2, 647-56.   DOI
69 Denault JB, Salvesen GS (2003). Human caspase-7 activity and regulation by its N-terminal peptide. J Biol Chem, 278, 34042-50.   DOI
70 Dinkova-Kostova AT, Holtzclaw WD, Cole RN, et al (2002). Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzymes that protect against carcinogens and oxidants. Proc Natl Acad Sci U.S.A, 18, 11908-13.
71 Ding X, Wang MY, Yao YX, et al (2010). Protective effect of 5-hydroxymethylfurfural derived from processed Fructus corni on human hepatocyte L02 injured by hydrogen peroxide and its mechanism. J Ethnopharmacol, 128, 373-6.   DOI
72 Donepudi M, Mac Sweeney A, Briand C, et al (2003). Insights into the regulatory mechanism for caspase-8 activation. Mol Cell, 11, 543-9.   DOI
73 D’Souza J, Kulkarni AR (1993). Comparative studies on nutritive values of tender foliage of seedlings and mature plants of Moringa oleifera Lam. J Econ Taxonomic Bot, 17, 479-85.
74 Ghazali HM, Mohammed AS (2011). Nuts and seeds in health and disease prevention. Nuts Seeds Heal Dis Prev, Elsevier.
75 Guevara AP, Vargas C, Sakurai H, et al (1999). An antitumor promoter from Moringa oleifera Lam. Mutat Res Toxicol Environ Mutagen, 2,181-8.
76 Gueyrard D, Barillari J, Iori R, et al (2000). First synthesis of an O-glycosylated glucosinolate isolated from Moringa oleifera, 41, 8307-9.   DOI
77 Gupta SC, Kim JH, Prasad S, et al (2010). Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev, 29, 405-34   DOI
78 Hanahan D, Weinberg RA (2011). Hallmarks of cancer: The next generation. Cell, 5, 646-74.
79 Hongmei Z (2012). Extrinsic and intrinsic apoptosis signal pathway review scientist. Intech, 3-22.
80 Leonarduzzi C, Leonardi S, Menozzi P, et al (2012).Towards an optimal sampling effort for paternity analysis in forest trees: what do the raw numbers tell us? iForest - Biogeosciences For, 1, 18-25.
81 Lettre DP, Mishra G, Singh P, et al (2011). Traditional uses, phytochemistry and pharmacological properties of moringa oleifera plant: An overview. Der Pharmacia Lettre, 2, 141-64.
82 Levine A, Belenghi B, Damari-Weisler H, et al (2001). Vesicleassociated membrane protein of Arabidopsis suppresses Bax induced apoptosis in yeast downstream of oxidative burst. J Biol Chem, 276, 46284-9.   DOI
83 Li-Weber M (2010). Targeting apoptosis pathways in cancer by Chinese medicine. Cancer Lett, 2, 304-12.
84 Lockshin RA, Zakeri Z (2007).Cell death in health and disease. J Cell Mol Med, 11, 1214-24.   DOI
85 Zhang DD, Hannink M (2003). Distinct cysteine residues in Keap1 are required for Keap1-dependent ubiquitination of Nrf2 and for stabilization of Nrf2 by chemopreventive agents and oxidative stress. Mol Cell Biol, 22, 8137-51.
86 Machuy N, Raja lingam K, Rudel T (2004). Requirement of caspase mediated cleavage of c-Abl during stress-induced apoptosis. Cell Death Differ, 11, 90-300.   DOI
87 Ma C, Song M, Zhang Y, et al (2014). Nickel nanowires induce cell cycle arrest and apoptosis by generation of reactive oxygen species in HeLa cells. Toxicol Reports,1, 114-21.   DOI
88 Mahajan SG, Mehta Aa (2010). Immunosuppressive activity of ethanolic extract of seeds of Moringa oleifera Lam. in experimental immune inflammation. J Ethnopharmacol, 130, 183-6.   DOI
89 Nadkarni KM (2009). Indian materia indica. Bombay popular prakashan, 1, 811-6.
90 Zeb A, Sadiq A, Ullah F, et al (2014). Phytochemical and toxicological investigations of crude methanolic extracts , subsequent fractions and crude saponins of Isodon rugosus. Biol Res, 47, 1-6.
91 Zhang DD, Lo SC, Sun Z, et al (2005).Ubiquitination of Keap1, a BTB-Kelch substrate adaptor protein for Cul3, targets Keap1 for degradation by a proteasome-independent pathway. J Biol Chem, 34, 30091-9.
92 Zhang X, Bommareddy A, Chen W, et al (2009). Sarcophinediol, a Chemopreventive Agent of Skin Cancer, Inhibits Cell Growth and Induces Apoptosis through Extrinsic Pathway in Human Epidermoid Carcinoma A431 Cells. Transl Oncol, 2, 21-30.   DOI
93 Zhang Y, Talalay P (1994). Anticarcinogenic activities of organic isothiocyanates: chemistry and mechanisms. Cancer Res, 54, 1976-81.
94 Zhang Y (2004). Cancer-preventive isothiocyanates: measurement of human exposure and mechanism of action. Mutation Res, 2, 173-90.
95 Zhao CR, Gao ZH, Qu XJ (2014). Nrf2-ARE signaling pathway and natural products for cancer chemoprevention. Cancer Epidem, 5, 523-33.
96 Ghosh N (2013). Anticancer effect of moringa oleifera leaf extract on human breast cancer cell, 1-57.
97 Amaglo NK, Bennett RN, Lo C, et al (2010). Profiling selected phytochemicals and nutrients in different tissues of the multipurpose tree Moringa oleifera L., grown in Ghana. Food Chem, 122, 1047-54.   DOI
98 Ganesan SK, Singh R, Roy Choudhury D, et al (2014). Genetic diversity and population structure study of drumstick (Moringa oleifera Lam.) using morphological and SSR markers. Ind Crops Prod, 60, 316-25.   DOI
99 Abdull Razis AF, Ibrahim MD, Kntayya SB, et al (2014). Health benefit of Moringa oleifera. Asian Pac J Cancer Prev, 20, 8571-6.
100 Adam HM, Nur KAD, Dyaningtyas P, et al (2012). Ethanolic extract of Moringa oleifera increased cytotoxic effect of doxorubicin on HeLa cancer cells. J Nat Remedies, 12, 108-4.
101 Anand P, Ajaikumar B, Kunnumakara CS, et al (2008). Cancer is a Preventable Disease that Requires Major Lifestyle Changes. Pharm Res, 25, 2097-16.   DOI
102 Anwar F, Bhanger MI (2003). Analytical characterization of Moringa oleifera seed oil grown in temperate regions of Pakistan. J Agric Food Chem, 51, 6558-63.   DOI
103 Anwar F, Ashraf M, Bhanger MI (2005). Interprovenance variation in the composition of Moringa oleifera oilseeds from Pakistan. J Am Oil Chem Soc, 82, 45-51.   DOI
104 Anwar F, Latif S, Ashraf M, et al (2007). Moringa oleifera: A Food Plant with Multiple Medicinal Uses. Phytother Res, 25, 17-5.
105 Jeong WS, Kim JW, Hu R, et al (2004). Modulatory properties of various natural chemopreventive agents in the activation of NF-${\kappa}B$ signalling pathway. Pharm Res, 21, 661-70.   DOI
106 Itoh K, Wakabayashi N, Katoh Y, et al (1999). Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev, 1, 76-86.
107 Jaiswal D, Kumar RP, Kumar A, et al (2009). Effect of Moringa oleifera Lam. leaves aqueous extract therapy on hyperglycemic rats. J Ethnopharmacol, 123, 392-6.   DOI
108 Jaiswal D, Rai PK, Mehta S, et al (2013). Role of moringa oleifera in regulation of diabetes-induced oxidative stress. Asian Pac J Trop Med, 6, 426-32.   DOI
109 Kang W, Lee D, Park CR (2012). Nest distribution of magpies Pica pica sericea as related to habitat connectivity in an urban environment. Landsc Urban Plan, 104, 212-19.   DOI
110 Kasolo JN, Bimenya GS, Ojok L, et al (2010). Phytochemicals and uses of Moringa oleifera leaves in Ugandan rural communities. J Med Plants Res, 4, 753-7.
111 Katayon S, Noor MJMM, Asma M, et al (2006). Effects of storage conditions of Moringa oleifera seeds on its performance in coagulation. Bioresour Technol, 13, 1455-60.
112 Kaur J, Vaish V, Sanyal, et al (2012). COX-2 as a molecular target of colon cancer chemoprevention: Promise and reality. Biomed Aging Pat, 3, 67-72.
113 Moyo B, Oyedemi S, Masika PJ, et al (2012). Polyphenolic content and antioxidant properties of Moringa oleifera leaf extracts and enzymatic activity of liver from goats supplemented with Moringa oleifera leaves/sunflower seed cake. Meat Sci. 91, 441-7.   DOI
114 Mahmood Z, Shukla Y (2010). Death receptors: targets for cancer therapy. Exp Cell Res, 316, 887-99.   DOI
115 Mehta LK, Balaraman R, Amin AH, et al (2003). Effect of fruits of moringa oleifera on the lipid profile of normal and hypercholesterolaemic rabbits. J Ethnopharmacol, 86, 191-5.   DOI
116 Morse DE, Pendrys DG, Katz RV, et al (2000). Food group intake and the risk of oral epithelial dysplasia in a United States population. Cancer Cause Contr, 11, 713-20.   DOI
117 Mueller M, Hobiger S, Jungbauer A (2010). Anti-inflammatory activity of extracts from fruits, herbs and spices. Food Chem. 122, 987-96.   DOI
118 Mukhtar H (2012). Chemoprevention: making it a success story for controlling human cancer. Cancer Lett. 326, 123-7.   DOI
119 Luo H, Rankin GO, Li Z, et al (2011). Kaempferol induces apoptosis in ovarian cancer cells through activating p53 in the intrinsic pathway. Food Chem, 2, 513-9.
120 Nakao S, Mabuchi M, Shimizu T, et al (2014). Design and synthesis of prostate cancer antigen-1 (PCA-1/ALKBH3) inhibitors as anti-prostate cancer drugs. Bioorganic Med Chem Lett. 24, 1071-1074.   DOI
121 Nathan SS,Venkataswera R, Gopalakrishnan V, et al (1999 ). Anti- inflammatory activity of Moringa oliefera. Lam Anc Sc Life, 18, 198-200.
122 Neergheen VS, Bahorun T, Will E, et al (2010). Targeting specific cell signaling transduction pathways by dietary and medicinal phytochemicals in cancer chemoprevention. Toxicol, 278, 229-41.   DOI
123 Nikolova M, Berkov S, Ivancheva S (2004). A rapid TLC method for analysis of external flavonoids aglycones in plant exudates. ACTA Chromol, 14, 10-114.
124 Oueslati S, Ksouri R, Falleh H, et al (2012). Phenolic content, antioxidant, anti-inflammatory and anticancer activities of the edible halophyte Suaeda fruticosa Forssk. Food Chem 2, 943-7.
125 Patel P, Patel N, Patel D, et al (2014).Phytochemical Analysis and Antifungal Activity of Moringa Oleifera. Int J Pharm Sci, 6, 144-7.
126 Popoola JO, Obembe OO (2013). Local knowledge, use pattern and geographical distribution of Moringa oleifera Lam. (Moringaceae) in Nigeria. J Ethnopharmacol, 150, 682-91.   DOI
127 Rashid U, Anwar F, Moser BR, et al (2008). Moringa oleifera oil: a possible source of biodiesel. Bioresour Technol, 99, 8175-9.   DOI
128 Ratshilivha N, Awouafack MD, du Toit ES, et al (2014). The variation in antimicrobial and antioxidant activities of acetone leaf extracts of 12 Moringa oleifera (Moringaceae) trees enables the selection of trees with additional uses. South African J Bot, 92, 59-64.   DOI
129 Kjaer AO, Malver B, El-Menshawi, et al (1979). Isothiocyanates in myrosinase-treated seed extracts of Moringa peregrina. Phytochem, 18, 1485-7   DOI
130 Khatik GL, Kaur J, Kumar V, et al (2012). 1,2,4-Oxadiazoles: A new class of anti-prostate cancer agents. Med Chem Lett, 22, 1912-16.   DOI
131 Lambole V, Kumar U (2012). Effect of moringa oleifera lam. on normal and dexamethasone suppressed wound healing. Asian Pac J Trop Biomed, 2, 219-23.   DOI
132 Kobayashi A, Kang MI, Watai Y, et al (2006). Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Molecules Cell Biol, 1, 221-9.
133 Kou X, Kirberger M, Yang Y, et al (2013). Natural products for cancer prevention associated with Nrf2-ARE pathway. Food Sci Hum Wellness, 2, 22-28.   DOI
134 Kundu J, Chun K, Aruoma OI, et al (2014). Mechanistic perspectives on cancer chemoprevention/chemotherapeutic effects of thymoquinone. Fundam Mol Mech Mutagen, 768, 22-34.   DOI
135 Lee H, Oh ET, Choi BH, et al (2015). NQO1-induced activation of AMPK contributes to cancer cell death by oxygen-glucose deprivation. Sci Rep, 5, 7769.   DOI