Browse > Article
http://dx.doi.org/10.7314/APJCP.2015.16.18.8059

DNA Methylation Biomarkers for Nasopharyngeal Carcinoma: Diagnostic and Prognostic Tools  

Jiang, Wei (Department of Radiation Oncology, the Affiliated Hospital of Guilin Medical University)
Cai, Rui (Department of Radiation Oncology, the Affiliated Hospital of Guilin Medical University)
Chen, Qiu-Qiu (Department of Radiation Oncology, the Affiliated Hospital of Guilin Medical University)
Publication Information
Asian Pacific Journal of Cancer Prevention / v.16, no.18, 2016 , pp. 8059-8065 More about this Journal
Abstract
Nasopharyngeal carcinoma (NPC) is a common tumor in southern China and south-eastern Asia. Effective strategies for the prevention or screening of NPC are limited. Exploring effective biomarkers for the early diagnosis and prognosis of NPC continues to be a rigorous challenge. Evidence is accumulating that DNA methylation alterations are involved in the initiation and progression of NPC. Over the past few decades, aberrant DNA methylation in single or multiple tumor suppressor genes (TSGs) in various biologic samples have been described in NPC, which potentially represents useful biomarkers. Recently, large-scale DNA methylation analysis by genome-wide methylation platform provides a new way to identify candidate DNA methylated markers of NPC. This review summarizes the published research on the diagnostic and prognostic potential biomarkers of DNA methylation for NPC and discusses the current knowledge on DNA methylation as a biomarker for the early detection and monitoring of progression of NPC.
Keywords
DNA methylation; nasopharyngeal carcinoma; biomarker; diagnosis; prognosis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yi B, Tan SX, Tang CE, et al (2009). Inactivation of 14-3-3 sigma by promoter methylation correlates with metastasis in nasopharyngeal carcinoma. J Cell Biochem, 106, 858-66.   DOI
2 Yi HM, Li H, Peng D, et al (2006). Genetic and epigenetic alterations of LTF at 3p21.3 in nasopharyngeal carcinoma. Oncol Res, 16, 261-72.   DOI
3 Ying J, Li H, Seng TJ, et al (2006). Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene, 25, 1070-80.   DOI
4 Ying J, Srivastava G, Hsieh WS, et al (2005). The stressresponsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin Cancer Res, 11, 6442-9.   DOI
5 You Y, Ma L, You M, et al (2010). TSLC1 gene silencing in cutaneous melanoma. Melanoma Res, 20, 179-83.
6 You Y, Yang W, Qin X, et al (2015). ECRG4 acts as a tumor suppressor and as a determinant of chemotherapy resistance in human nasopharyngeal carcinoma. Cell Oncol, 38, 205-14.   DOI
7 You Y, Yang W, Wang Z, et al (2013). Promoter hypermethylation contributes to the frequent suppression of the CDK10 gene in human nasopharyngeal carcinomas. Cell Oncol, 36, 323-31.   DOI
8 Zhang H, Feng X, Liu W, et al (2011). Underlying mechanisms for LTF inactivation and its functional analysis in nasopharyngeal carcinoma cell lines. J Cell Biochem, 112, 1832-43.   DOI
9 Zhang S, Li S, Gao JL (2013). Promoter methylation status of the tumor suppressor gene SOX11 is associated with cell growth and invasion in nasopharyngeal carcinoma. Cancer Cell Int, 13, 109.   DOI
10 Chen F, Mo Y, Ding H, et al (2011). Frequent epigenetic inactivation of Myocardin in human nasopharyngeal carcinoma. Head Neck, 33, 54-9.   DOI
11 Chen T, Long B, Ren G, et al (2015). Protocadherin20 acts as a tumor suppressor gene: epigenetic inactivation in nasopharyngeal carcinoma. J Cell Biochem, 116, 1766-75.   DOI
12 Cheung CC, Chung GT, Lun SW, et al (2014). miR-31 is consistently inactivated in EBV-associated nasopharyngeal carcinoma and contributes to its tumorigenesis. Mol Cancer, 13, 184.   DOI
13 Cheung HW, Ching YP, Nicholls JM, et al (2005). Epigenetic inactivation of CHFR in nasopharyngeal carcinoma through promoter methylation. Mol Carcinog, 43, 237-45.   DOI
14 Choi GC, Li J, Wang Y, et al (2014). The metalloprotease ADAMTS8 displays antitumor properties through antagonizing EGFR-MEK-ERK signaling and is silenced in carcinomas by CpG methylation. Mol Cancer Res, 12, 228-38.   DOI
15 Chow LS, Lo KW, Kwong J, et al (2004). RASSF1A is a target tumor suppressor from 3p21.3 in nasopharyngeal carcinoma. Int J Cancer, 109, 839-47.   DOI
16 Dai W, Cheung AK, Ko JM, et al (2015). Comparative methylome analysis in solid tumors reveals aberrant methylation at chromosome 6p in nasopharyngeal carcinoma. Cancer Med.
17 Delpu Y, Cordelier P, Cho WC, et al (2013). DNA methylation and cancer diagnosis. Int J Mol Sci, 14, 15029-58.   DOI
18 Du C, Huang T, Sun D, et al (2011). CDH4 as a novel putative tumor suppressor gene epigenetically silenced by promoter hypermethylation in nasopharyngeal carcinoma. Cancer Lett, 309, 54-61.   DOI
19 Esteller M (2007). Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet, 8, 286-98.   DOI
20 Jones PA (1996). DNA methylation errors and cancer. Cancer Res, 56, 2463-7.
21 Koga T, Takeshita M, Yano T, et al (2011). CHFR hypermethylation and EGFR mutation are mutually exclusive and exhibit contrastive clinical backgrounds and outcomes in non-small cell lung cancer. Int J Cancer, 128, 1009-17.   DOI
22 Kwong J, Lo KW, Chow LS, et al (2005a). Silencing of the retinoid response gene TIG1 by promoter hypermethylation in nasopharyngeal carcinoma. Int J Cancer, 113, 386-92.   DOI
23 Kwong J, Lo KW, Chow LS, et al (2005b). Epigenetic silencing of cellular retinol-binding proteins in nasopharyngeal carcinoma. Neoplasia, 7, 67-74.   DOI
24 Kwong J, Lo KW, To KF, et al (2002). Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma. Clin Cancer Res, 8, 131-7.
25 Lee KY, Geng H, Ng KM, et al (2008). Epigenetic disruption of interferon-gamma response through silencing the tumor suppressor interferon regulatory factor 8 in nasopharyngeal, esophageal and multiple other carcinomas. Oncogene, 27, 5267-76.   DOI
26 Li HP, Huang HY, Lai YR, et al (2014a). Silencing of miRNA-148a by hypermethylation activates the integrinmediated signaling pathway in nasopharyngeal carcinoma. Oncotarget, 5, 7610-24.   DOI
27 Li J, Gong P, Lyu X, et al (2014b). Aberrant CpG island methylation of PTEN is an early event in nasopharyngeal carcinoma and a potential diagnostic biomarker. Oncol Rep, 31, 2206-12.   DOI
28 Li L, Tao Q, Jin H, et al (2010). The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma. Clin Cancer Res, 16, 2949-58.   DOI
29 Nawaz I, Moumad K, Martorelli D, et al (2015b). Detection of nasopharyngeal carcinoma in Morocco (North Africa) using a multiplex methylation-specific PCR biomarker assay. Clin Epigenetics, 7, 89.   DOI
30 Nawaz I, Hu LF, Du ZM, et al (2015a). Integrin alpha9 gene promoter is hypermethylated and downregulated in nasopharyngeal carcinoma. Oncotarget, 6, 31493-507.   DOI
31 Peng D, Ren CP, Yi HM, et al (2006). Genetic and epigenetic alterations of DLC-1, a candidate tumor suppressor gene, in nasopharyngeal carcinoma. Acta Biochim Biophys Sin (Shanghai), 38, 349-55.   DOI
32 Ramos EA, Camargo AA, Braun K, et al (2010). Simultaneous CXCL12 and ESR1 CpG island hypermethylation correlates with poor prognosis in sporadic breast cancer. BMC Cancer, 10, 23.   DOI
33 Ran Y, Wu S, You Y (2011). Demethylation of E-cadherin gene in nasopharyngeal carcinoma could serve as a potential therapeutic strategy. J Biochem, 149, 49-54.   DOI
34 Razak AR, Siu LL, Liu FF, et al (2010). Nasopharyngeal carcinoma: the next challenges. Eur J Cancer, 46, 1967-78.   DOI
35 Seng TJ, Low JS, Li H, et al (2007). The major 8p22 tumor suppressor DLC1 is frequently silenced by methylation in both endemic and sporadic nasopharyngeal, esophageal, and cervical carcinomas, and inhibits tumor cell colony formation. Oncogene, 26, 934-44.   DOI
36 Shu XS, Li L, Ji M, et al (2013). FEZF2, a novel 3p14 tumor suppressor gene, represses oncogene EZH2 and MDM2 expression and is frequently methylated in nasopharyngeal carcinoma. Carcinogenesis, 34, 1984-93.   DOI
37 Sun D, Zhang Z, Van do N, et al (2007). Aberrant methylation of CDH13 gene in nasopharyngeal carcinoma could serve as a potential diagnostic biomarker. Oral Oncol, 43, 82-7.   DOI
38 Ayadi W, Karray-Hakim H, Khabir A, et al (2008). Aberrant methylation of p16, DLEC1, BLU and E-cadherin gene promoters in nasopharyngeal carcinoma biopsies from Tunisian patients. Anticancer Res, 28, 2161-7.
39 Zhou W, Feng X, Li H, et al (2009). Inactivation of LARS2, located at the commonly deleted region 3p21.3, by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma. Acta Biochim Biophys Sin, 41, 54-62.   DOI
40 Ayadi W, Allaya N, Frikha H, et al (2014). Identification of a novel methylated gene in nasopharyngeal carcinoma: TTC40. Biomed Res Int, 2014, 691742.
41 Ayan I, Kaytan E, Ayan N (2003). Childhood nasopharyngeal carcinoma: from biology to treatment. Lancet Oncol, 4, 13-21.   DOI
42 Baylin SB, Herman JG (2000). DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet, 16, 168-74.   DOI
43 Belinsky SA, Nikula KJ, Palmisano WA, et al (1998). Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A, 95, 11891-6.   DOI
44 Bruce JP, Yip K, Bratman SV, et al (2015). Nasopharyngeal Cancer: Molecular Landscape. J Clin Oncol, 33, 3346-55.   DOI
45 Challouf S, Ziadi S, Zaghdoudi R, et al (2012). Patterns of aberrant DNA hypermethylation in nasopharyngeal carcinoma in Tunisian patients. Clin Chim Acta, 413, 795-802.   DOI
46 Chang HW, Chan A, Kwong DL, et al (2003a). Detection of hypermethylated RIZ1 gene in primary tumor, mouth, and throat rinsing fluid, nasopharyngeal swab, and peripheral blood of nasopharyngeal carcinoma patient. Clin Cancer Res, 9, 1033-8.
47 Chang HW, Chan A, Kwong DL, et al (2003b). Evaluation of hypermethylated tumor suppressor genes as tumor markers in mouth and throat rinsing fluid, nasopharyngeal swab and peripheral blood of nasopharygeal carcinoma patient. Int J Cancer, 105, 851-5.   DOI
48 He D, Zeng Q, Ren G, et al (2012). Protocadherin8 is a functional tumor suppressor frequently inactivated by promoter methylation in nasopharyngeal carcinoma. Eur J Cancer Prev, 21, 569-75.   DOI
49 Fendri A, Khabir A, Hadri-Guiga B, et al (2010). Epigenetic alteration of the Wnt inhibitory factor-1 promoter is common and occurs in advanced stage of Tunisian nasopharyngeal carcinoma. Cancer Invest, 28, 896-903.   DOI
50 Fendri A, Masmoudi A, Khabir A, et al (2009). Inactivation of RASSF1A, RARbeta2 and DAP-kinase by promoter methylation correlates with lymph node metastasis in nasopharyngeal carcinoma. Cancer Biol Ther, 8, 444-51.   DOI
51 Heng DM, Wee J, Fong KW, et al (1999). Prognostic factors in 677 patients in Singapore with nondisseminated nasopharyngeal carcinoma. Cancer, 86, 1912-20.   DOI
52 Hong MH, Mai HQ, Min HQ, et al (2000). A comparison of the Chinese 1992 and fifth-edition International Union Against Cancer staging systems for staging nasopharyngeal carcinoma. Cancer, 89, 242-7.   DOI
53 Hutajulu SH, Indrasari SR, Indrawati LP, et al (2011). Epigenetic markers for early detection of nasopharyngeal carcinoma in a high risk population. Mol Cancer, 10, 48.   DOI
54 Jeannel D, Bouvier G, Hubert A (1999). Nasopharyngeal carcinoma: An epidemiological approach to carcinogenesis. Cancer Surveys, 33, 125-55.
55 Jiang W, Li YQ, Liu N, et al (2014). 5-Azacytidine enhances the radiosensitivity of CNE2 and SUNE1 cells in vitro and in vivo possibly by altering DNA methylation. PLoS One, 9, 93273.   DOI
56 Jiang W, Liu N, Chen XZ, et al (2015). Genome-wide Identification of a Methylation Gene Panel as a Prognostic Biomarker in Nasopharyngeal Carcinoma. Mol Cancer Ther.
57 Li W, Li X, Wang W, et al (2011b). NOR1 is an HSF1- and NRF1-regulated putative tumor suppressor inactivated by promoter hypermethylation in nasopharyngeal carcinoma. Carcinogenesis, 32, 1305-14.   DOI
58 Li L, Ying J, Tong X, et al (2014c). Epigenetic identification of receptor tyrosine kinase-like orphan receptor 2 as a functional tumor suppressor inhibiting beta-catenin and AKT signaling but frequently methylated in common carcinomas. Cell Mol Life Sci, 71, 2179-92.   DOI
59 Li L, Zhang Y, Fan Y, et al (2015a). Characterization of the nasopharyngeal carcinoma methylome identifies aberrant disruption of key signaling pathways and methylated tumor suppressor genes. Epigenomics, 7, 155-73.   DOI
60 Li LL, Shu XS, Wang ZH, et al (2011a). Epigenetic disruption of cell signaling in nasopharyngeal carcinoma. Chin J Cancer, 30, 231-9.   DOI
61 Li YQ, Ren XY, He QM, et al (2015b). MiR-34c suppresses tumor growth and metastasis in nasopharyngeal carcinoma by targeting MET. Cell Death Dis, 6, 1618.   DOI
62 Lin YC, You L, Xu Z, et al (2006). Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines. Biochem Biophys Res Commun, 341, 635-40.   DOI
63 Liu H, Zhang L, Niu Z, et al (2008). Promoter methylation inhibits BRD7 expression in human nasopharyngeal carcinoma cells. BMC Cancer, 8, 253.   DOI
64 Liu XQ, Chen HK, Zhang XS, et al (2003). Alterations of BLU, a candidate tumor suppressor gene on chromosome 3p21.3, in human nasopharyngeal carcinoma. Int J Cancer, 106, 60-5.   DOI
65 Lo KW, Cheung ST, Leung SF, et al (1996). Hypermethylation of the p16 gene in nasopharyngeal carcinoma. Cancer Res, 56, 2721-5.
66 Tong JH, Ng DC, Chau SL, et al (2010). Putative tumoursuppressor gene DAB2 is frequently down regulated by promoter hypermethylation in nasopharyngeal carcinoma. BMC Cancer, 10, 253.   DOI
67 Sung FL, Cui Y, Hui EP, et al (2014). Silencing of hypoxiainducible tumor suppressor lysyl oxidase gene by promoter methylation activates carbonic anhydrase IX in nasopharyngeal carcinoma. Am J Cancer Res, 4, 789-800.
68 Tao Q, Chan AT (2007). Nasopharyngeal carcinoma: molecular pathogenesis and therapeutic developments. Expert Rev Mol Med, 9, 1-24.
69 Tian F, Yip SP, Kwong DL, et al (2013). Promoter hypermethylation of tumor suppressor genes in serum as potential biomarker for the diagnosis of nasopharyngeal carcinoma. Cancer Epidemiol, 37, 708-13.   DOI
70 Tong JH, Tsang RK, Lo KW, et al (2002). Quantitative Epstein- Barr virus DNA analysis and detection of gene promoter hypermethylation in nasopharyngeal (NP) brushing samples from patients with NP carcinoma. Clin Cancer Res, 8, 2612-9.
71 Tsao SW, Liu Y, Wang X, et al (2003). The association of E-cadherin expression and the methylation status of the E-cadherin gene in nasopharyngeal carcinoma cells. Eur J Cancer, 39, 524-31.   DOI
72 Wang S, Xiao X, Zhou X, et al (2010). TFPI-2 is a putative tumor suppressor gene frequently inactivated by promoter hypermethylation in nasopharyngeal carcinoma. BMC Cancer, 10, 617.   DOI
73 Wang S, Zhang R, Claret FX, et al (2014). Involvement of microRNA-24 and DNA methylation in resistance of nasopharyngeal carcinoma to ionizing radiation. Mol Cancer Ther, 13, 3163-74.   DOI
74 Wei WI, Sham JS (2005). Nasopharyngeal carcinoma. Lancet, 365, 2041-54.   DOI
75 Lo KW, Tsang YS, Kwong J, et al (2002). Promoter hypermethylation of the EDNRB gene in nasopharyngeal carcinoma. Int J Cancer, 98, 651-5.   DOI
76 Lo KW, Huang DP (2002). Genetic and epigenetic changes in nasopharyngeal carcinoma. Semin Cancer Biol, 12, 451-62.   DOI
77 Lo KW, Kwong J, Hui AB, et al (2001). High frequency of promoter hypermethylation of RASSF1A in nasopharyngeal carcinoma. Cancer Res, 61, 3877-81.
78 Lo KW, To KF, Huang DP (2004). Focus on nasopharyngeal carcinoma. Cancer Cell, 5, 423-8.   DOI
79 Loyo M, Brait M, Kim MS, et al (2011). A survey of methylated candidate tumor suppressor genes in nasopharyngeal carcinoma. Int J Cancer, 128, 1393-403.   DOI
80 Lujambio A, Calin GA, Villanueva A, et al (2008). A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A, 105, 13556-61.   DOI
81 Luo FY, Xiao S, Liu ZH, et al (2015). Kank1 reexpression induced by 5-Aza-2'-deoxycytidine suppresses nasopharyngeal carcinoma cell proliferation and promotes apoptosis. Int J Clin Exp Pathol, 8, 1658-65.
82 McDermott AL, Dutt SN, Watkinson JC (2001). The aetiology of nasopharyngeal carcinoma. Clin Otolaryngol Allied Sci, 26, 82-92.   DOI
83 Mittag F, Kuester D, Vieth M, et al (2006). DAPK promotor methylation is an early event in colorectal carcinogenesis. Cancer Lett, 240, 69-75.   DOI
84 Mo Y, Midorikawa K, Zhang Z, et al (2012). Promoter hypermethylation of Ras-related GTPase gene RRAD inactivates a tumor suppressor function in nasopharyngeal carcinoma. Cancer Lett, 323, 147-54.   DOI
85 Wong TS, Kwong DL, Sham JS, et al (2004). Quantitative plasma hypermethylated DNA markers of undifferentiated nasopharyngeal carcinoma. Clin Cancer Res, 10, 2401-6.   DOI
86 Wong AM, Kong KL, Chen L, et al (2013). Characterization of CACNA2D3 as a putative tumor suppressor gene in the development and progression of nasopharyngeal carcinoma. Int J Cancer, 133, 2284-95.   DOI
87 Wong TS, Chang HW, Tang KC, et al (2002). High frequency of promoter hypermethylation of the death-associated proteinkinase gene in nasopharyngeal carcinoma and its detection in the peripheral blood of patients. Clin Cancer Res, 8, 433-7.
88 Wong TS, Kwong DL, Sham JS, et al (2003a). Promoter hypermethylation of high-in-normal 1 gene in primary nasopharyngeal carcinoma. Clin Cancer Res, 9, 3042-6.
89 Wong TS, Tang KC, Kwong DL, et al (2003b). Differential gene methylation in undifferentiated nasopharyngeal carcinoma. Int J Oncol, 22, 869-74.
90 Xiao X, Zhao W, Tian F, et al (2014). Cytochrome b5 reductase 2 is a novel candidate tumor suppressor gene frequently inactivated by promoter hypermethylation in human nasopharyngeal carcinoma. Tumour Biol, 35, 3755-63.   DOI
91 Yanatatsaneejit P, Chalermchai T, Kerekhanjanarong V, et al (2008). Promoter hypermethylation of CCNA1, RARRES1, and HRASLS3 in nasopharyngeal carcinoma. Oral Oncol, 44, 400-6.   DOI
92 Yang X, Dai W, Kwong DL, et al (2015). Epigenetic markers for noninvasive early detection of nasopharyngeal carcinoma by methylation-sensitive high resolution melting. Int J Cancer, 136, 127-35.   DOI
93 Yang Z, Lan H, Chen X, et al (2014). Molecular alterations of the WWOX gene in nasopharyngeal carcinoma. Neoplasma, 61, 170-6.   DOI